

Why to use multivariate techniques ?

"If the only tool you know is a hammer you will tend to see all your problems as nails!"

© JPSousa

Page 1

Multivariate Statistical Tools in Ecology ISCED, Lubango, March 2016

Introductory notes to Multivariate Analysis Tools

© JPSousa

© JPSousa

Why to use multivariate techniques ?

- Several attributes describe each subject or each sample
- Examples:
 - Effects of a chemical on soil fauna communities
 - Plant, animal or microbial communities under different treatments along with the measurement of several environmental variables
 - Monitoring data with the evaluation of several variables along time

Why to use multivariate
techniques ?

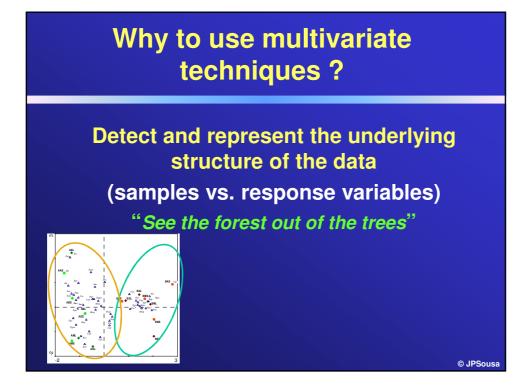
Data matrix (part)

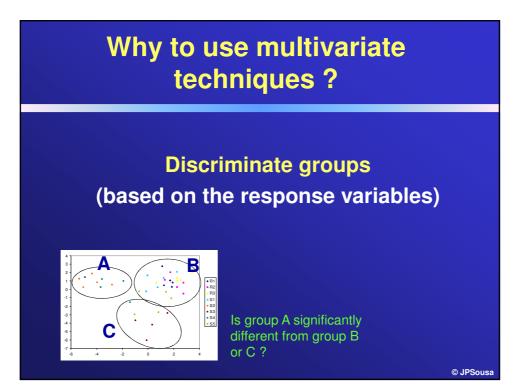
Sparse data (many zeros)

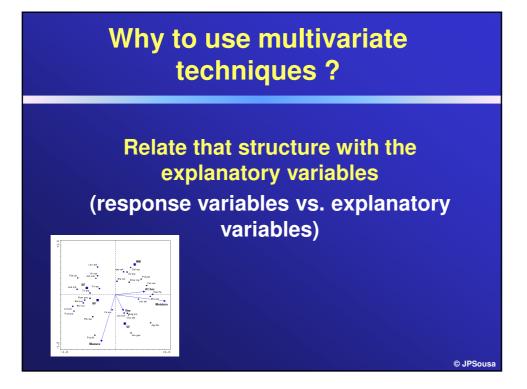
Most species are infrequent (present in a few locations)

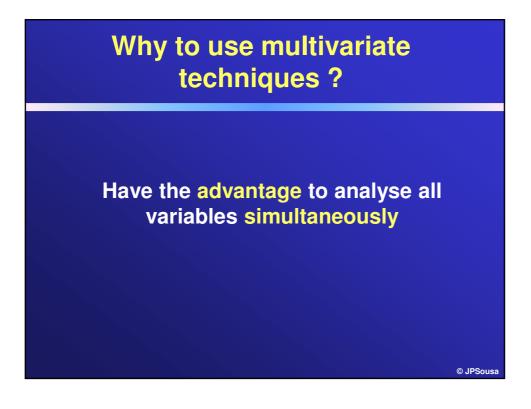
> The number of factors influencing species composition is potentially very large

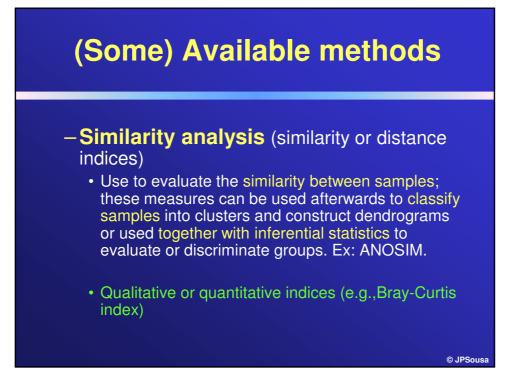
> The number of important factors is typically few


> There is much noise (replicate samples will vary substantially from each other)


Sample	Dip	Het	Hom	Lep	Col	Thy	Ort	Pso
C1 C2	0	0	0	0	16 48	0	0	
	0	0	0	0		0	0	
C3				0	0	0		
C4 C5	0	16	16	0			0	
	16	0	0	0	64	32	0	8
PDA1 PDA2	16	32	0	0	112	0	0	
		0				0		
PDA3	0	16	16	0	96		0	
PDA4 PDA5	0	16	0	0	208	0	0	
PDA5 PDB1	0	144	0	0	192	0	16	
PDB2	0	0	0	0	0	0	0	
PDB2 PDB3	0	0	16	0	80	0	0	
PDB3 PDB4	0	16	0	0	32	0	0	
PDB4 PDB5	0	0	0	16	80	16	0	
PDC1	0	32	16	0	32	0	0	
PDC2	0	0	0	0	16	0	0	
PDC3	0	0	0	0	64	0	0	
PDC4	0	48	0	0	16	0	16	
PDC5	0	0	0	0	96	48	0	
M1	0	0	32	0	0	16	0	
M2	0	0	16	0	48	0	0	
M3	0	0	0	0	128	16	0	


Why to use multivariate techniques ?


- The different measurements (variables) can separated into:
 - 'response variables', e.g., number of individuals of different species, microbial parameters, physiological variables (biomarkers), ecotoxicological endpoints, presence-absence of a band (in a DGGE gel) – measure the effect
 - 'explanatory variables' ,e.g., concentration of chemicals, soil/water chemical and physical variables
 they are related to the cause


© JPSousa

(Some) Ordination methods available

- Reduce the complexicity of the data and represent it into a system of new variables or dimentions – the axes
- Used to represent and interpret the underlying structure of the data
- Examples:
 - Principal Component Analysis (PCA)
 - Correspondence Analysis (CA)

© JPSousa

(Some) Ordination methods available

Samples and species (= response variables) are projected onto a system of axes formed by linear combinations of the original variables where:

Axis 1 explains a certain amount of variation of the data set

© JPSousa

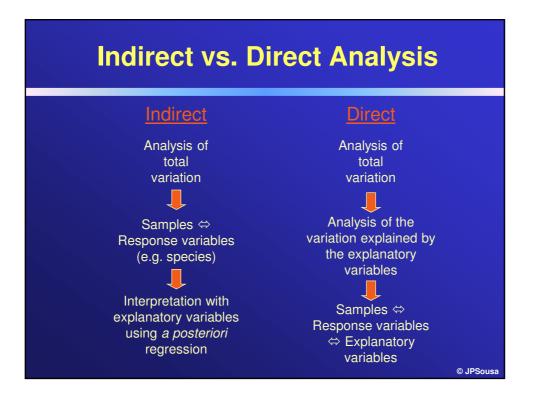
© JPSousa

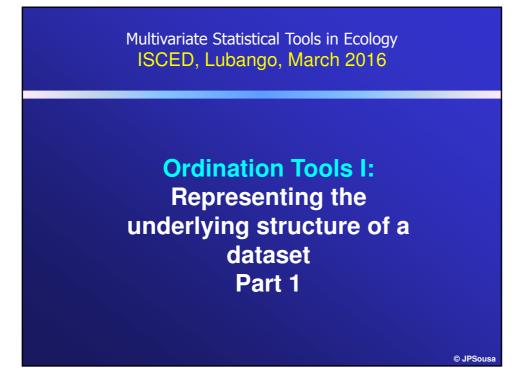
· Axis 2 explains a smaller amount of variation, etc

These new variables (exes) cannot be correlated with each other, otherwise the analysis does not work

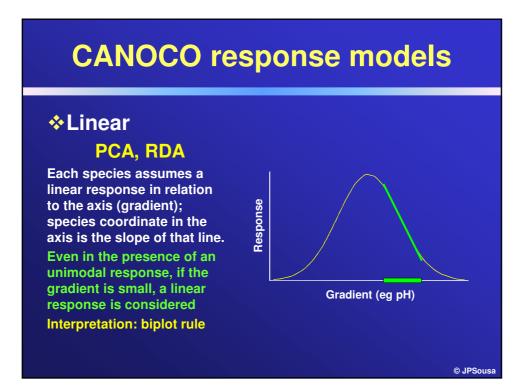
(Some) Ordination methods available

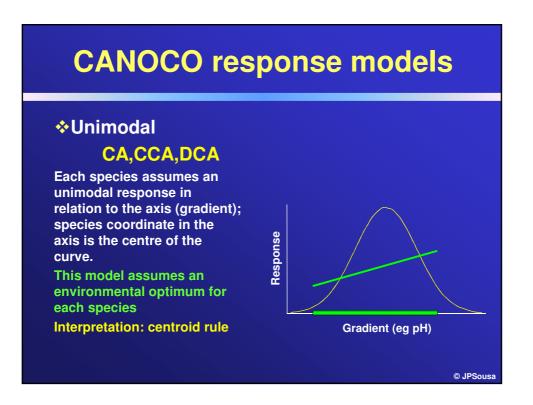
Discriminating groups (samples and response variables)

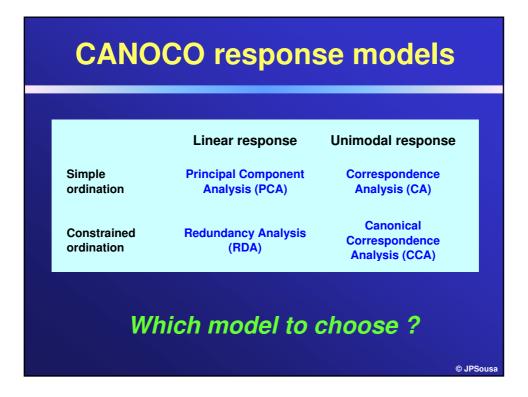

- Different ways to reach the same end
 - Discriminant analysis (DA) samples are plotted on axes "derived" from the best discriminating variables
 - Non-Metric Multidimentional Scalling + ANOSIM (NMDS & ANOSIM) – samples are plotted is a system based on their similarity
 - PERMANOVA

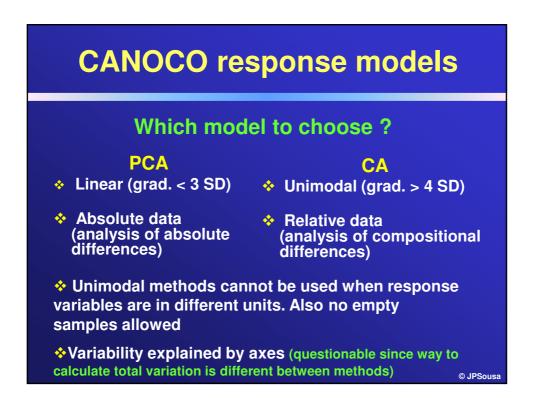


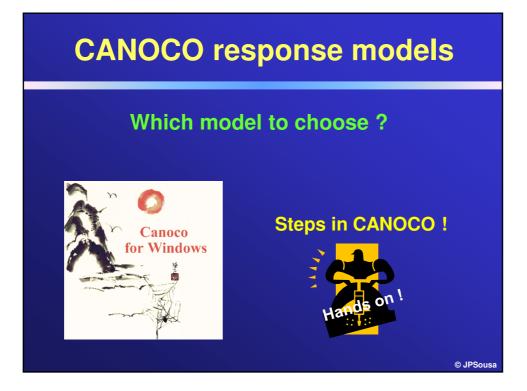
Relationship between two data sets (response variables and explanatory variables)

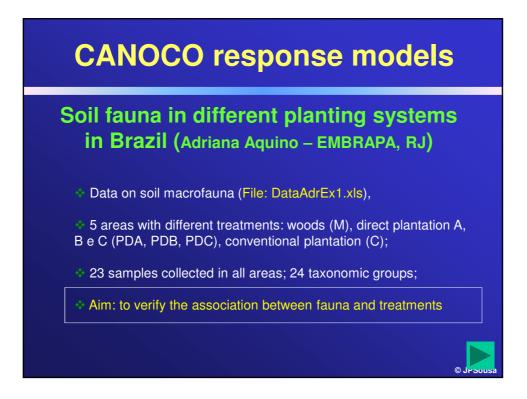

- Two ways to reach the same end
 - Indirect analysis (e.g., PCA, CA + passive explanatory variables)
 - Direct analyais (RDA, CCA): canonical or constrained analysis

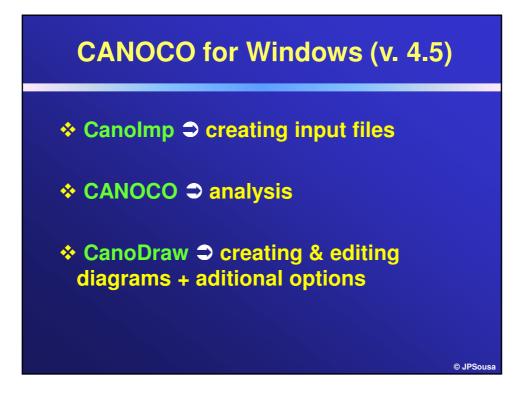

© JPSousa

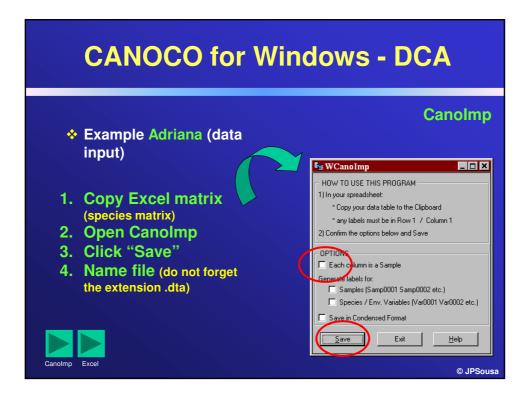


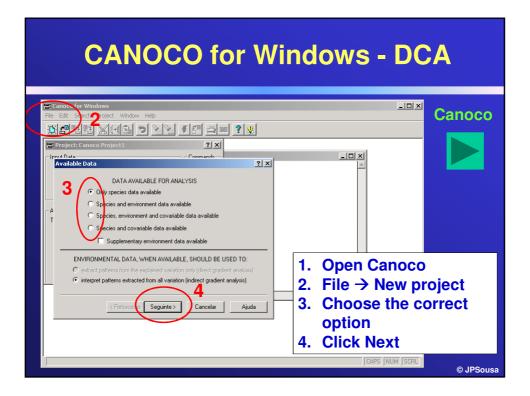


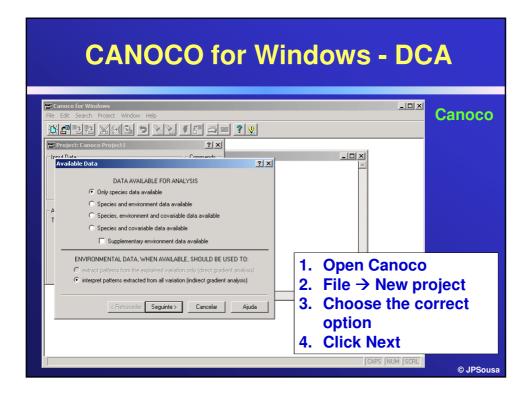


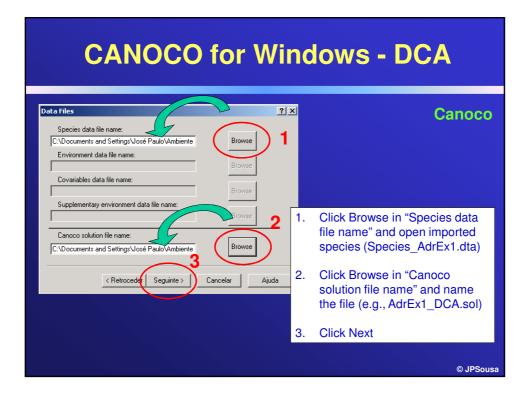


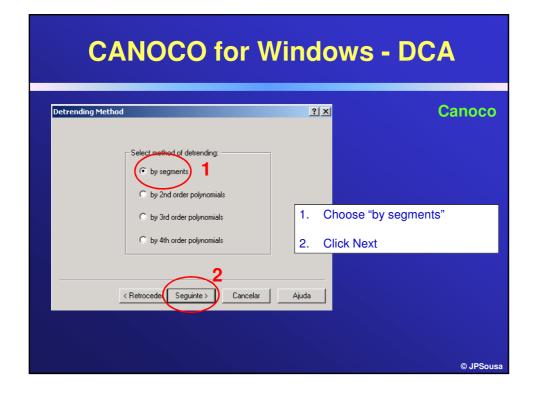


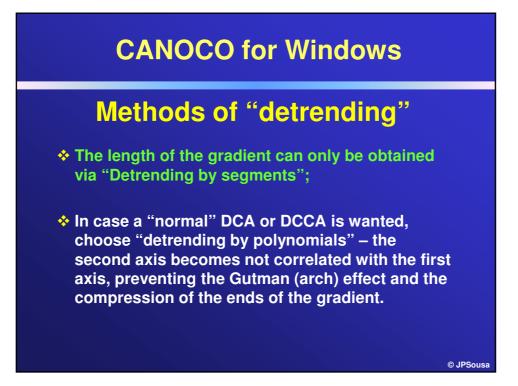


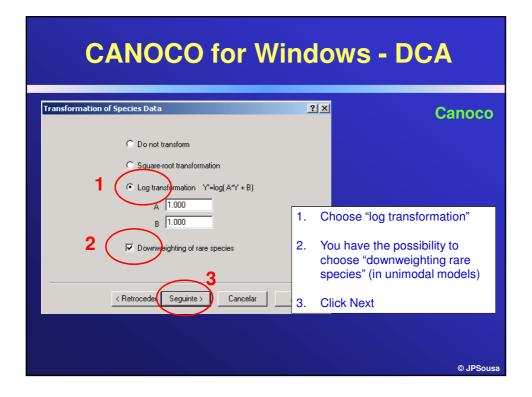


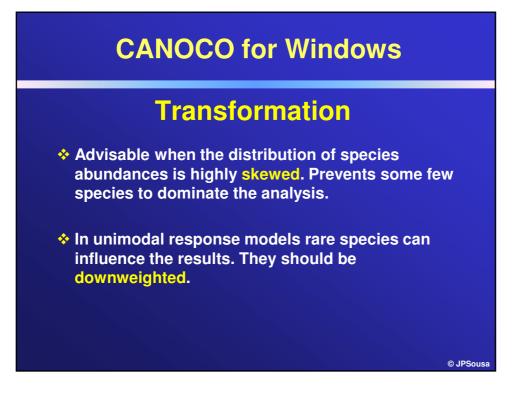


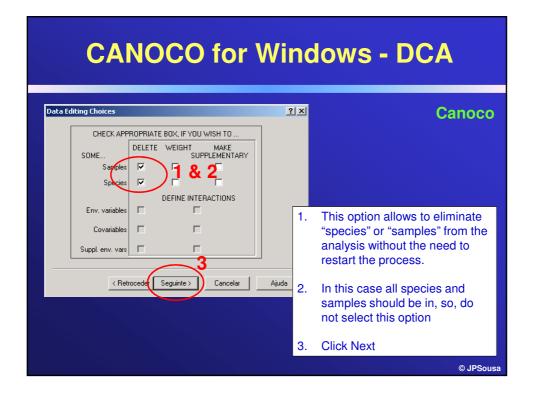


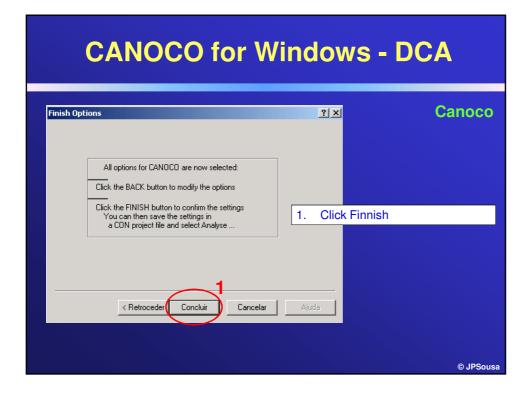


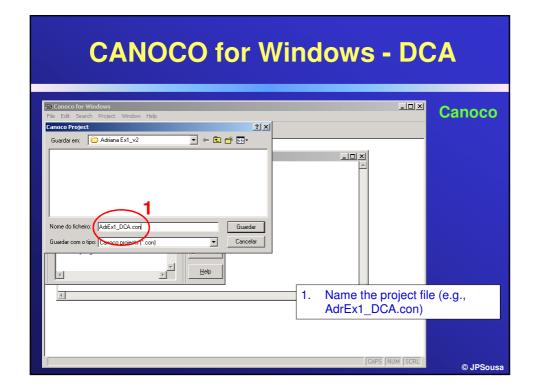


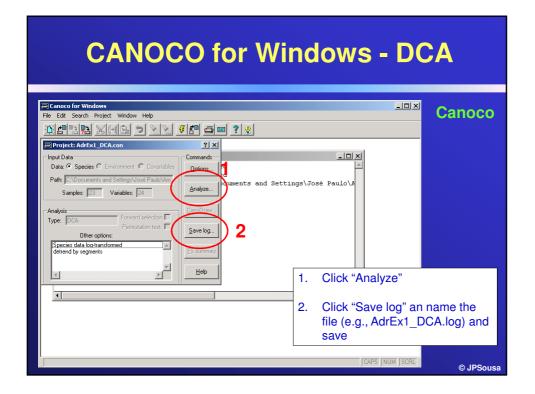


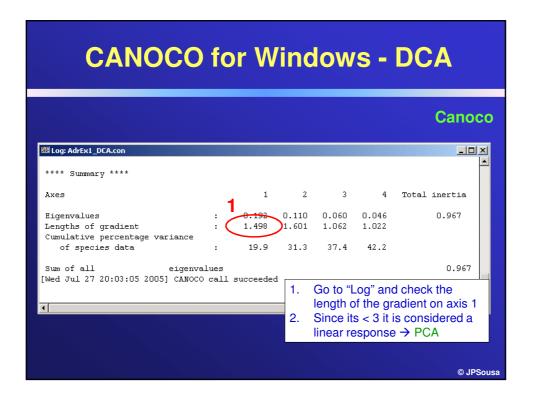


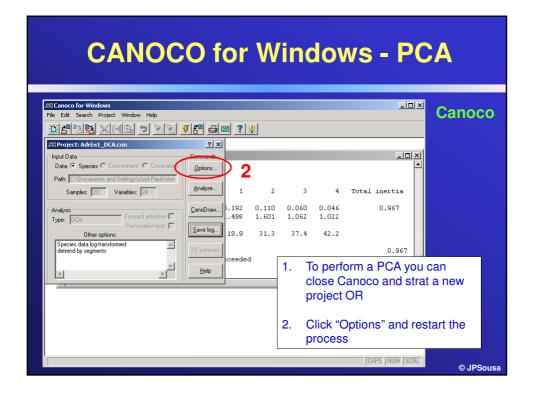

CA	NOC	CO fo	or Wi	nc	dows - DCA
ype of Analysis					ाज्य Canoc
	G	iradient Analysis	Methods		
Response Models	Indirect	Direct	Hybrid		
Linear	O PCA	C RDA	C hRDA		
Unimodal	O CA	O CCA	C hCCA	1.	Choose DCA to look the length of the gradient
Unimodal (detrended)	€ DCA	d dcca	C hDCCA	2.	Click Next
	Retroceder	Seguinte >	Cancelar	Ajuda	
	E				
					© JPSc

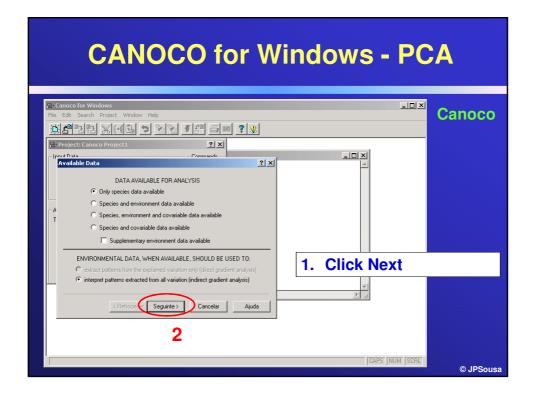


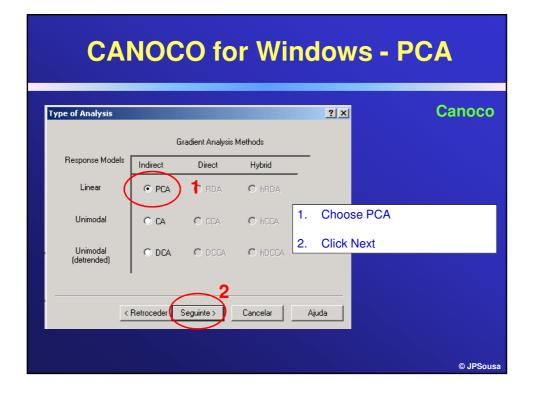


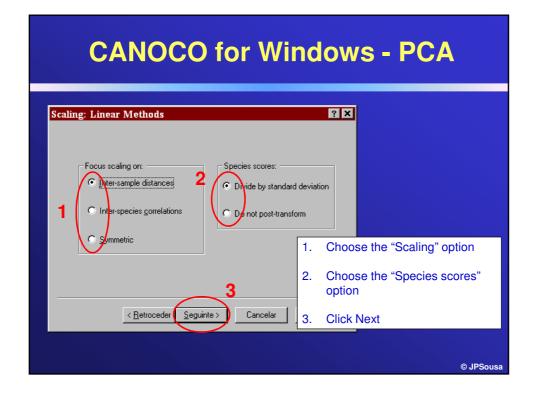


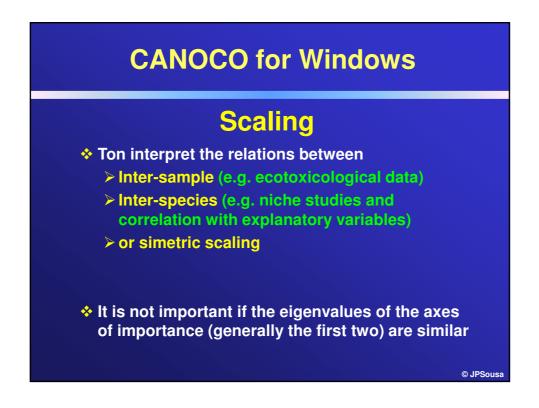


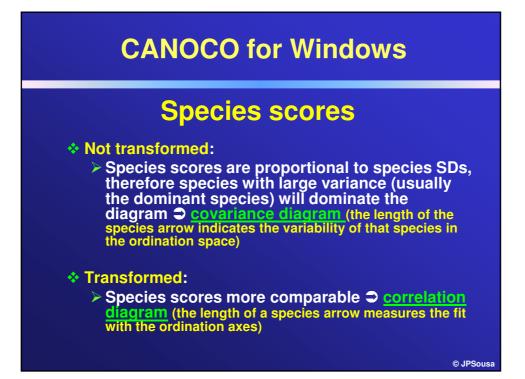


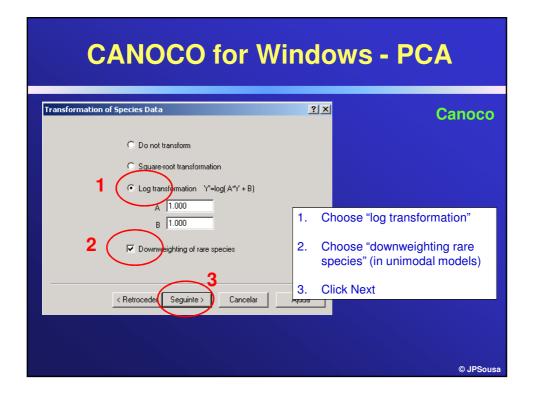


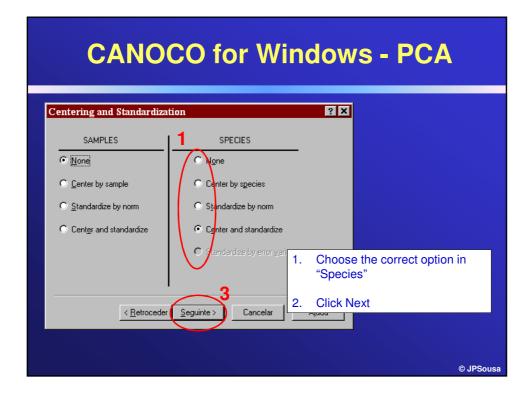


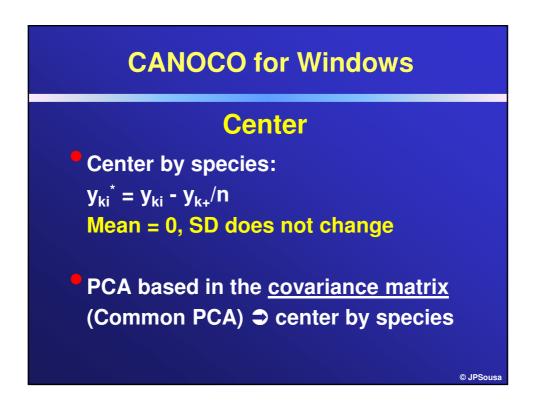


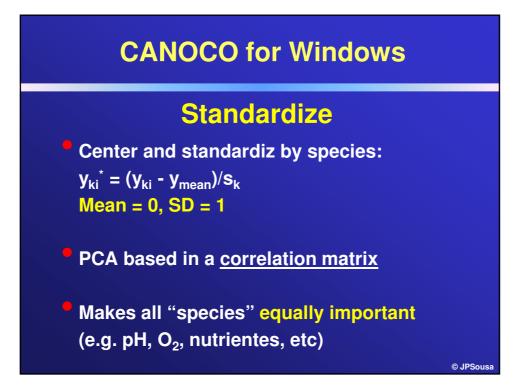


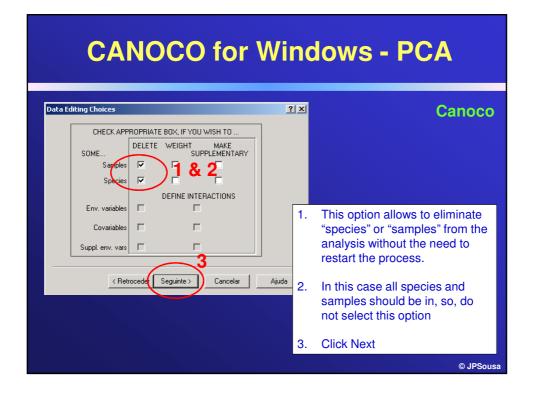


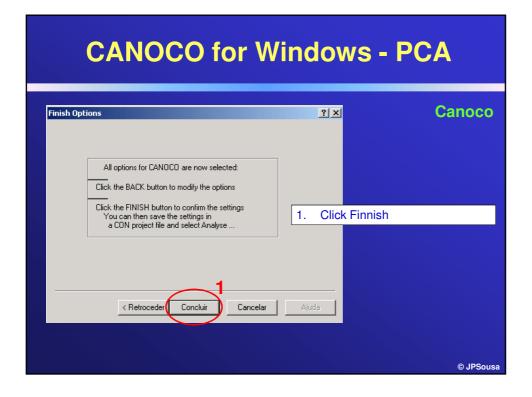

CANOCO for Wind	dows - PCA
Data Files ? × Species data file name: Image: C:\Documents and Settings\José Paulo\Ambiente Environment data file name: Browse Covariables data file name: Browse Dovariables data file name: Browse	Canoco
Supplementary environment data file name: Canoco solution file name: C:\Documents and Settings\José Paulo\Ambiente C:\Documents and C:\Documents and C:	Species file → no change Click Browse in "Canoco solution file name" and give another name to the solution file (e.g., AdrEx1_PCA.sol) Click Next
	© JPSousa

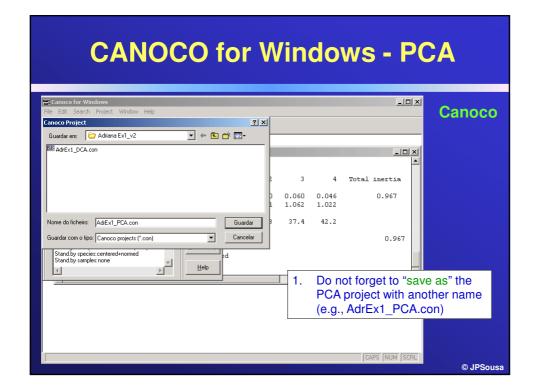


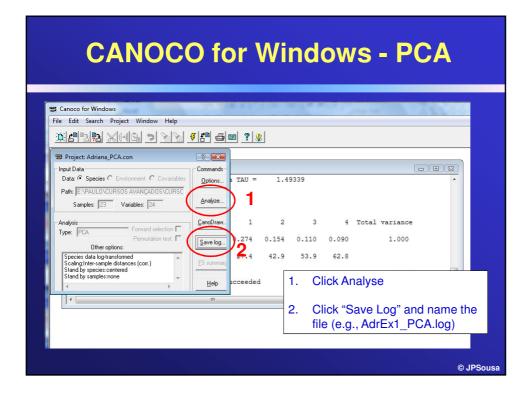


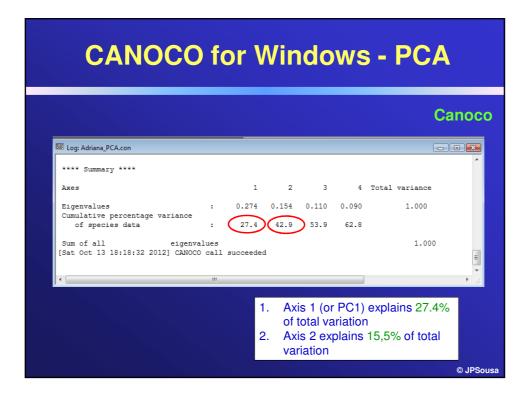


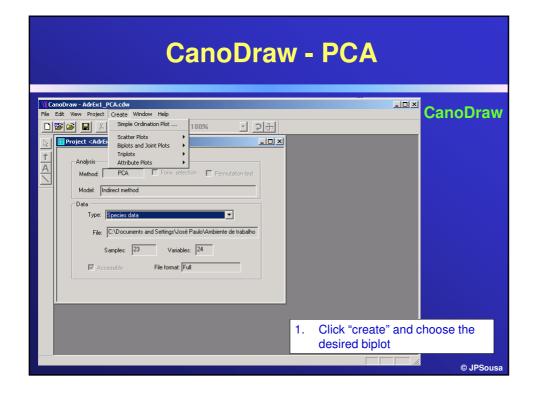


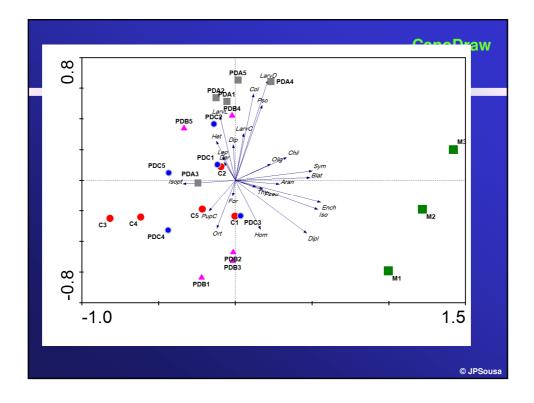


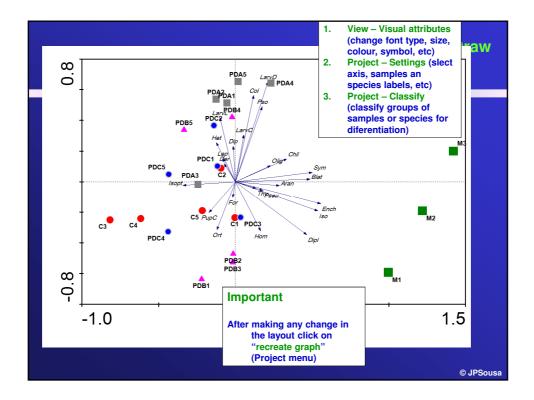


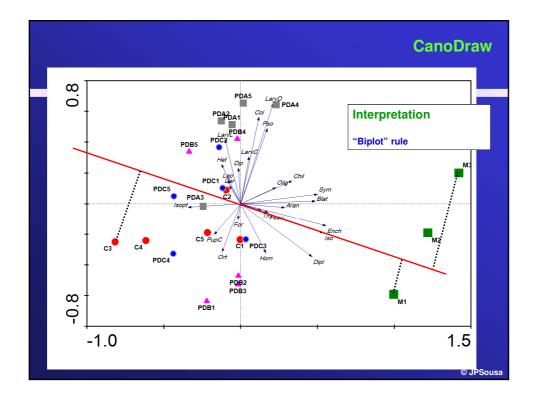


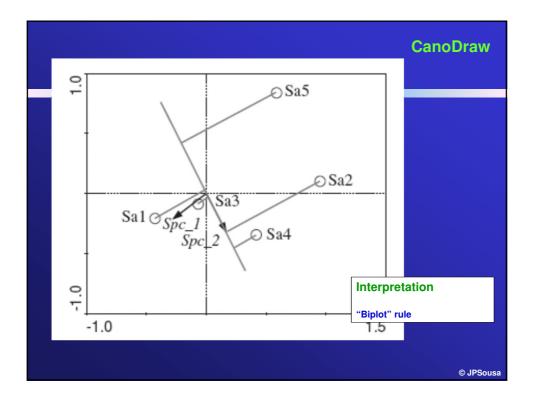


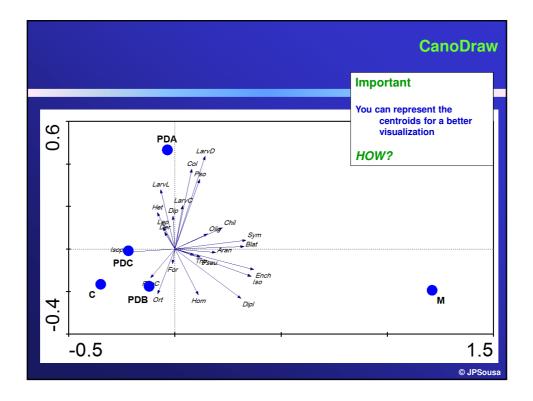


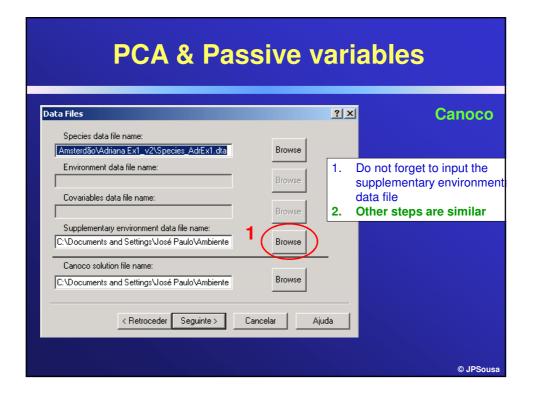


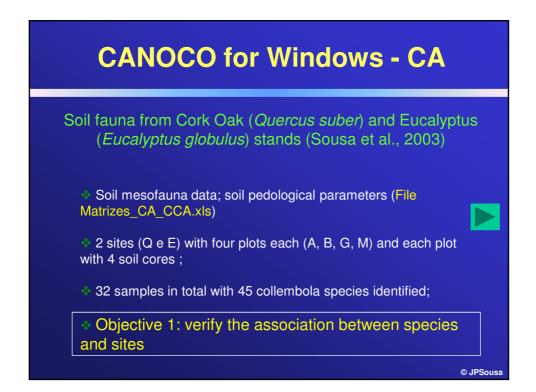


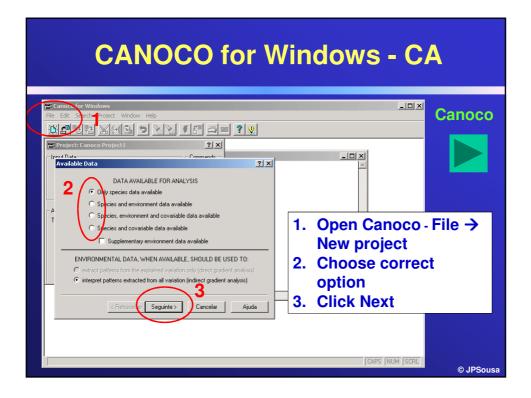

CANOCO for Windows - PCA
Image: Canoco for Windows File Edit Search Project Window Help Image: Canoco Image: Canoco Image: Canoco Image: Canoco
Imput Data Commands Data: © Species © Environment © Covariables Commands Data: © Species © Environment © Covariables Options Path: E:\PAULO\CURSOS AVANÇADOS\CURSC Analyzis Samples: 23 Analyzis CanoDraw Type: PCA Forward selection Other options: Save Tog Other options: Save Tog Species data logitant/ormed 0.274 0.154 0.110 0.090 27.4 42.9 53.9 62.8
Scaling Inter-sample distances (corr.) Stand by secience intered Stand by secience intered

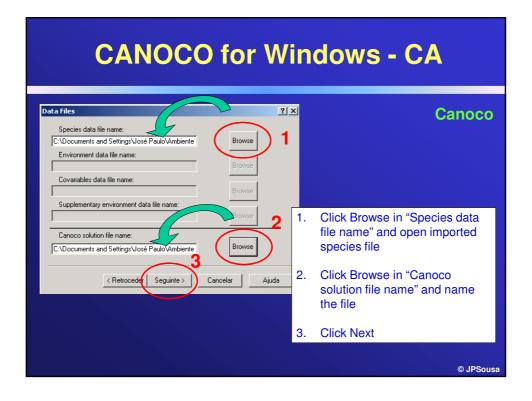

CanoDraw - PCA	
Image: Constraint of the project log1 File Edk Wew Project Create Window Help Image: Constraint of the project Create Creat	CanoDraw
For Help, press F1	© JPSousa

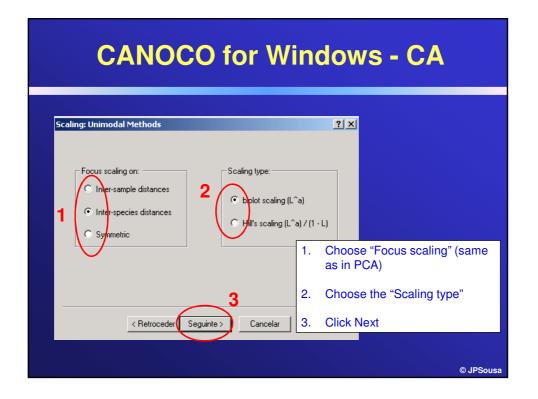


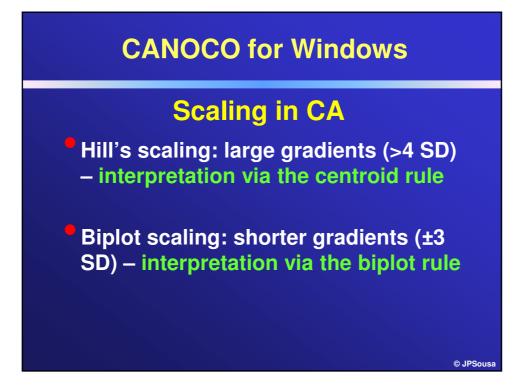


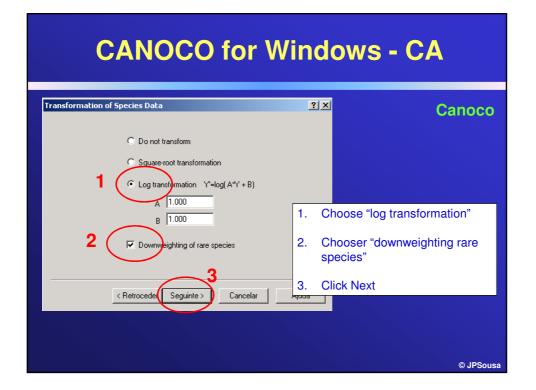


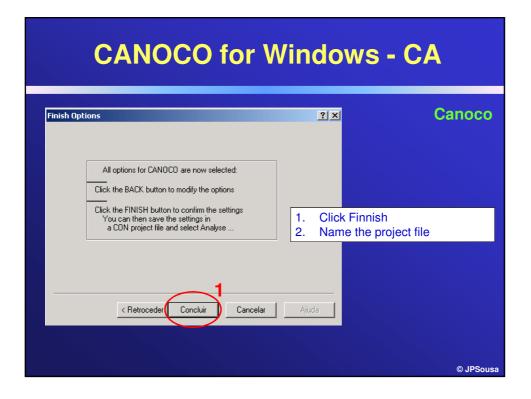


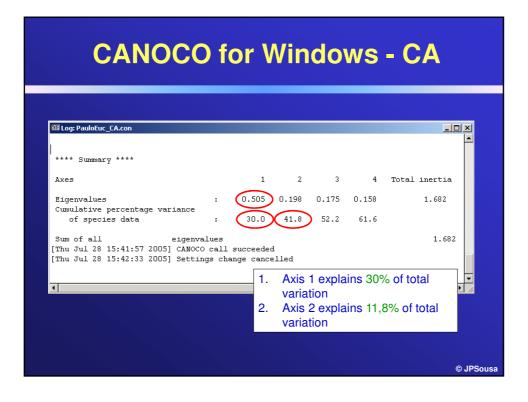

PCA & Passive variables							
Available Data	<u>?×</u>						
DATA AVAILABLE FOR ANALYSIS Only precies data available Species and environment data available Species, environment and covariable data available Species and covariable data available Supplementary environment data available	 Create another project with "only species data available" Plus "Supplementary environment data available" 						
ENVIRONMENTAL DATA, WHEN AVAILABLE, SHOULD BE USED TO: C extract patterns from the explained variation only (direct gradient analysis) C interpret patterns extracted from all variation (indirect gradient analysis)							
	© JPSousa						

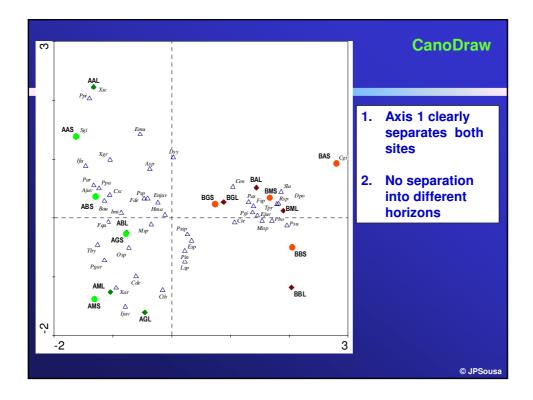

PCA & Passive variables									
					Canoc	0			
🕮 Log: Adriana_PCA_Cent.con						×			
**** Summary ****						*			
Axes	1	2	3	4	Total variance				
Species-environment correlations : Cumulative percentage variance	0.920	0.648	0.461	0.575					
of species data : of species-environment relation:	27.4	42.9 72.0							
Sum of all eigenvalues Sum of all canonical eigenvalues					1.000	-			
e m		1. 2.	variable) explain 41.2% of total variation						
					© JPS	ousa			

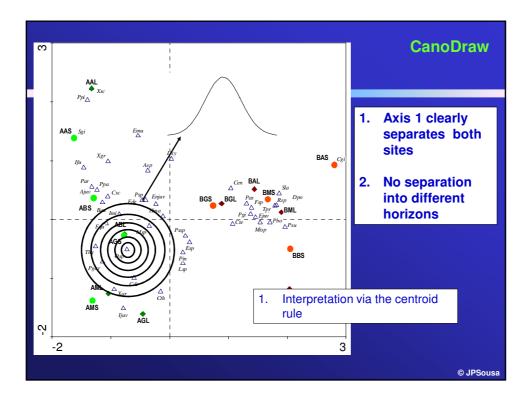


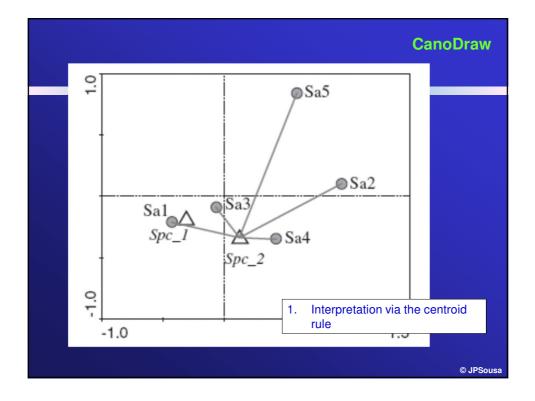


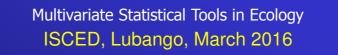

CA		CO fo	or W	in	dows -	СА
Type of Analysis					<u>? ×</u>	Canoco
	G	radient Analysis	Methods			
Response Models	Indirect	Direct	Hybrid	_		
Linear	O PCA	C RDA	C hRDA			
Unimodal	• CA	1 0 CCA	C hCCA	1.	Choose CA	
Unimodal (detrended)	O DCA	C DCCA	C HDCCA	2.	Click Next	
	Retroceder	2 Geguinte >	Cancelar		Ajuda	
						© JPSousa








CANOCO for	Win	dows - CA
Data Editing Choices CHECK APPROPRIATE BOX, IF YOU WISH TO SOME Samples Species DELETE WEIGHT MAKE SUPPLEMENTARY T & 2 DEFINE INTERACTIONS	<u>?</u> ×	Canoco
Erv. variables	۲. ^{Ajuda} 2.	This option allows to eliminate "species" or "samples" from the analysis without the need to restart the process. In this case all species and samples should be in, so, do not select this option
	3.	Click Next
		© JPSousa



Ordination Tools I: Representing the underlying structure of a dataset Part 2

"Non-Metric Multidimentional Scaling"

What is the purpose ?

- Represent samples in a ordination space
- Advantage: you can choose the metric (similarity/distance index) used to evaluate the distance among samples
- Advantage: it preserves the distances in the multidimentional space
- It constructs a configuration map of the samples in the m dimentions based on the relative similarity between samples

© JPSousa

"Non-Metric Multidimentional Scaling"

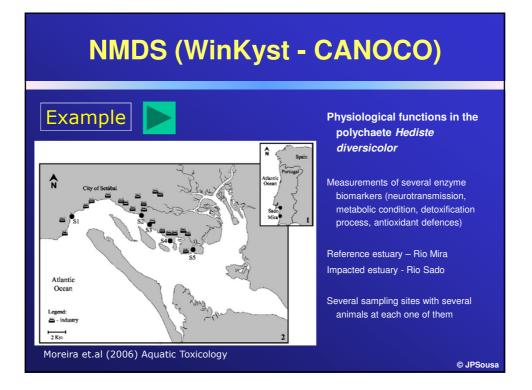
How does it work?

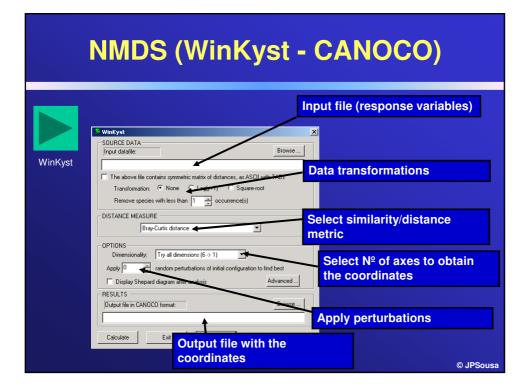
- Constructs a representation of the samples
- Compare the distances among them (in the diagram) with the values on the (di)similarity matrix
- Evaluates the relation between these two measures with a regression

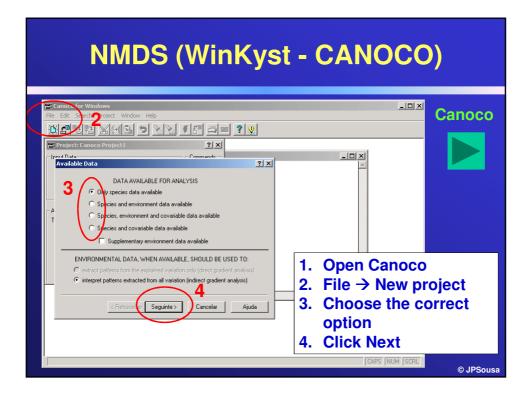
© JPSousa

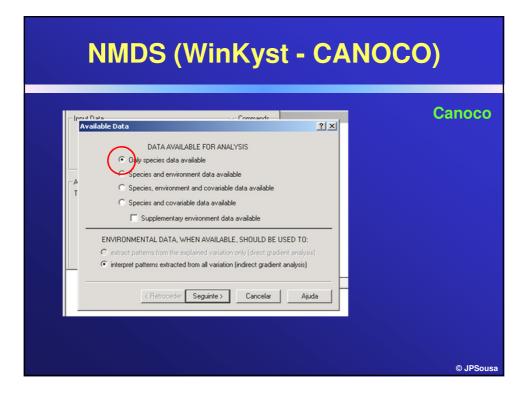
- Evaluates the reliability of the regression (stress)
- Changes representation to reduce stress
- Repeats process until convergence

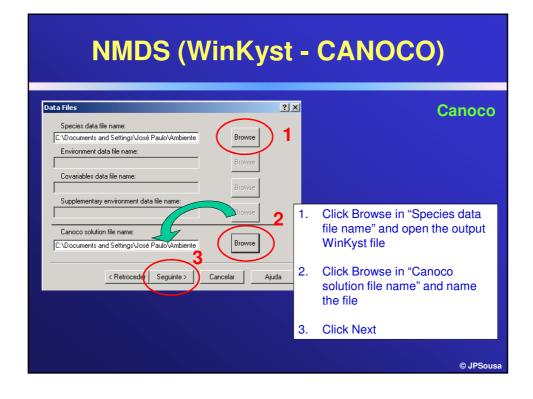
"Non-Metric Multidimentional Scaling"

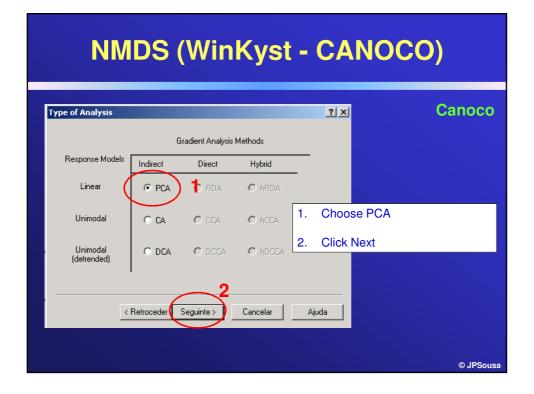

Stress values ->

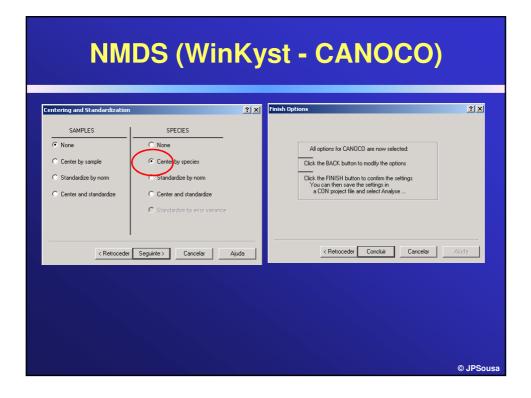

<u>Stress < 0.05</u> – excellent representation (low possibility of a wrong interpretation)

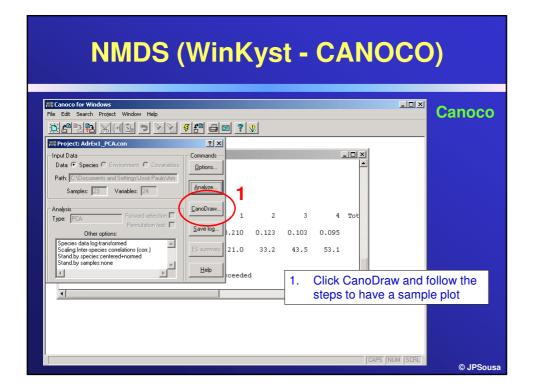

Stress < 0.1 – good representation (3D diagrams do not bring any additional information)

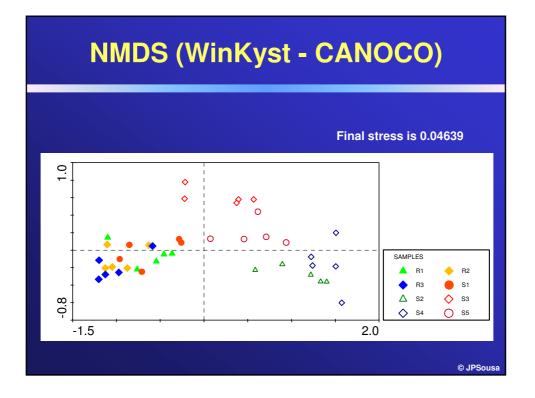

<u>Stress < 0.2</u> – 2D diagram of certain utility (advisable to complement interpretation with other method)

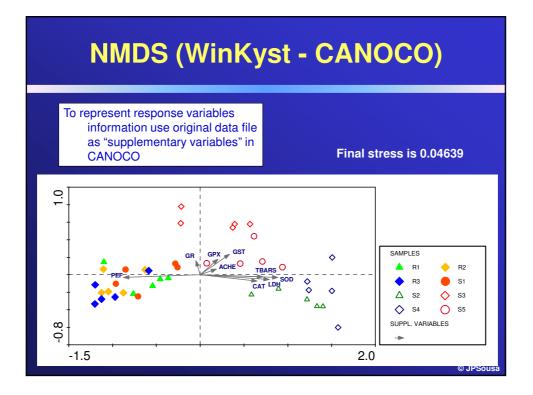

<u>Stress > 0.3</u> – non acceptable representation (samples are randomly placed in the diagram) ${}_{\odot JPSousa}$

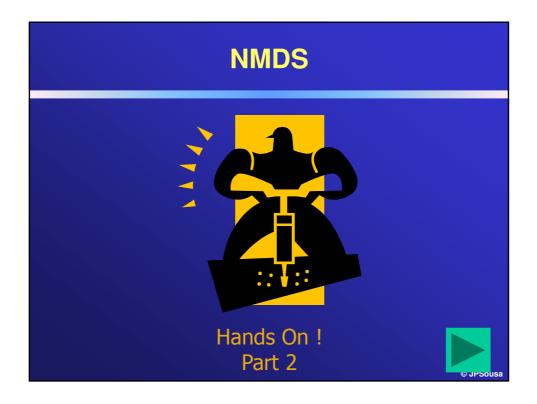




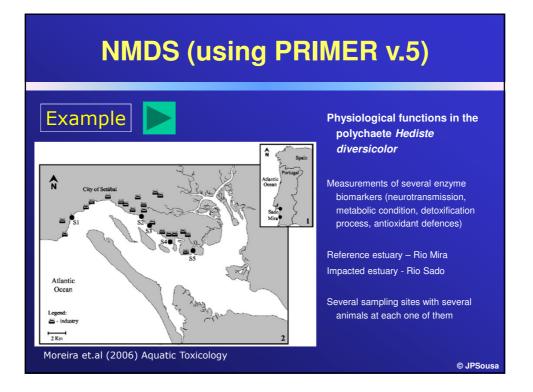


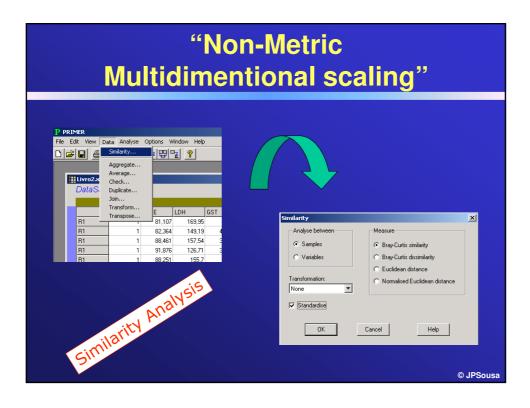



	vst - CANOCO)
Scaling: Linear Methods 2 × Poctor-caling on: Species scores: Inter-species correlations Divide by standard deviation Inter-species correlations Do not post-transform	Transformation of Species Data ? • Do not transform • Square-root transformation • Log transformation Y=log(A*Y + B) A B 1000 B Downweighting of tare species
< Retroceder Seguinte > Cancelar Ajuda	Retroceder Seguinte> Cancelar Ajuda Ø JPSousa

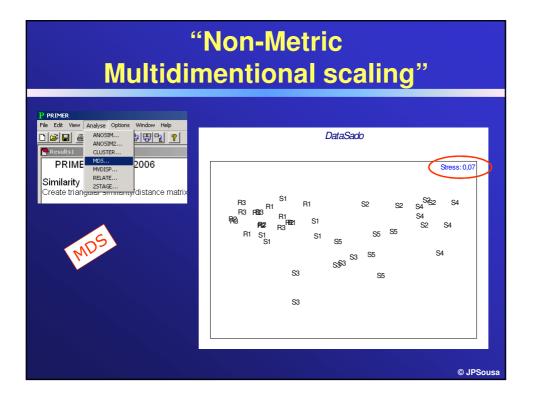


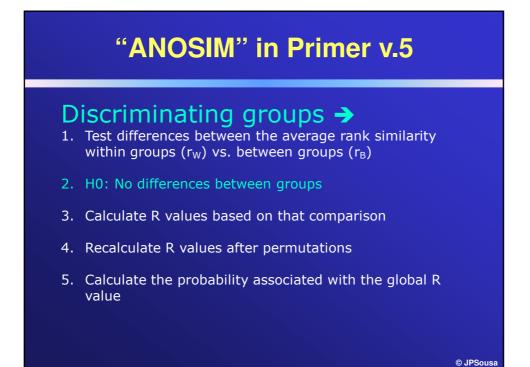
NMDS (WinKyst - CANOCC))
Fie Edit Search Project Window Help	Canoco
FeelProject: AdrExt_PCA.con ?] × Input Data Commands Data Sepecies Path: Cooranis Cobcuments and Settings: Los Paulo: Analyze. Analyze.	
Analysis Forward selection CareBrow 1 2 3 4 Tot Type: PCA Forward selection 1 2 3 4 Tot Other options: Species data log-transformed Save log 10 0.123 0.103 0.095 Stand by species:centred+nomed ES summary 21.2 33.2 43.5 53.1	
JCAPS NUM SCRL	© JPSousa



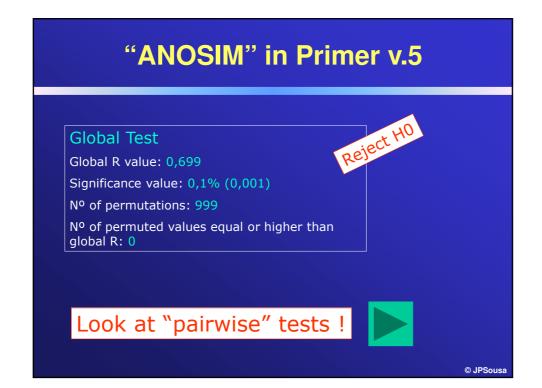

Multivariate Statistical Tools in Ecology ISCED, Lubango, March 2016

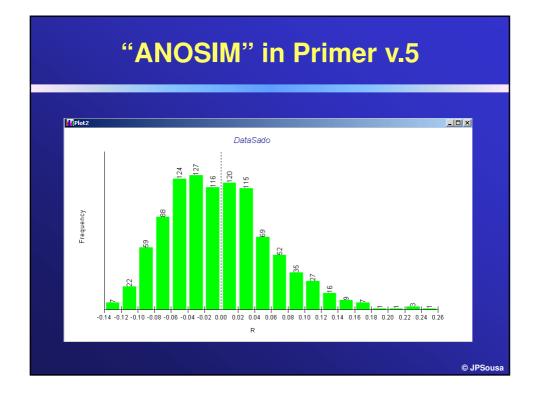
Ordination Tools II: Discriminating groups of samples/subjects Part 1

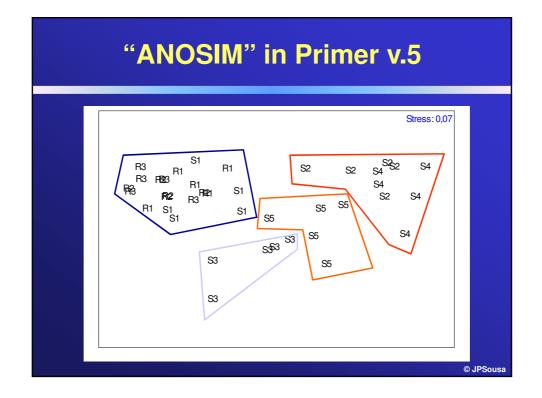


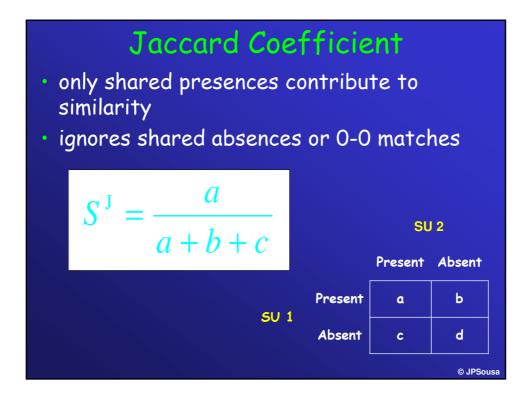

t data	
Procurat	
TIMPOLO TO MARKET CONTRACT CON	

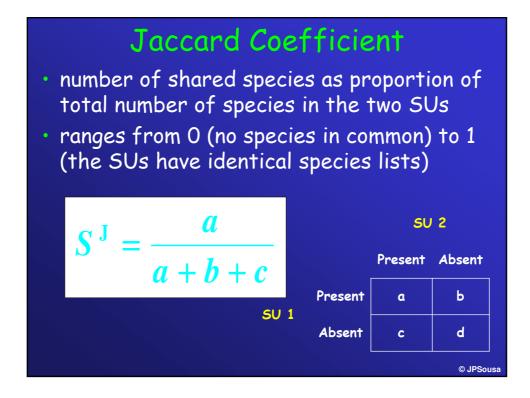
"Non-M Multidimention	
PEIMER File Edit View Options Window Help Image: Contract of the Properties Image: Contract of the Proproperties <t< th=""><th><complex-block></complex-block></th></t<>	<complex-block></complex-block>

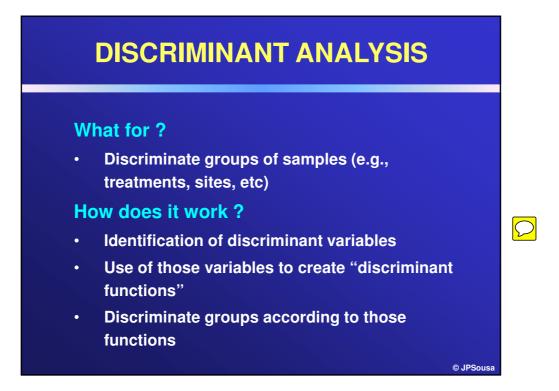

	Mul			lon ent					ing) "	
	Matrit ado rity										
rity	d (Similarity	Matrix)									_ [
Simila	ado rity										
	R1	R1 I	R1	R1 F	81	R2	R2	R2	R2	R2	R3
R1			R1	R1 F	31	R2	R2	R2	R2	R2	R3
R1 R1	94,62		R1	<u>R1 F</u>	31	R2	R2	R2	R2	R2	R3
R1 R1 R1	94,62	97,389		R1 F	1	R2	R2	R2	R2	R2	R3
R1 R1 R1 R1 R1	94,62 95,646 91,891	97,389 93,864	95,088	<u></u> ,.	31	R2	R2	R2	R2	R2	R3
R1 R1 R1 R1 R1 R1	94,62 95,646 91,891 96,216	97,389 93,864 96,142	95,088 98,116	94,501		R2	R2	R2	R2	R2	R3
R1 R1 R1 R1 R1	94,62 95,646 91,891	97,389 93,864 96,142 96,494	95,088 98,116 95,981	94,501 95,984	95,212	R2 96.758	R2	R2	R2	R2	<u>R3</u>
R1 R1 R1 R1 R1 R1 R2	H1 94,62 95,646 91,891 96,216 92,86	97,389 93,864 96,142 96,494 96,176	95,088 98,116	94,501			82 98,552	<u>R2</u>	R2	R2	R3
R1 R1 R1 R1 R1 R2 R2	H1 94,62 95,646 91,891 96,216 92,86 93,063	97,389 93,864 96,142 96,494 96,176 96,826	95,088 98,116 95,981 96,135	94,501 95,984 94,709	95,212 95,553	96,758		R2 95,782	R2	R2	R3
R1 R1 R1 R1 R1 R1 R2 R2 R2 R2	H1 94,62 95,646 91,891 96,216 92,86 93,063 93,063	97,389 93,864 96,142 96,494 96,176 96,826	95,088 98,116 95,981 96,135 96,631	94,501 95,984 94,709 95,244	95,212 95,553 95,865	96,758 96,808	98,552		R2 92,547		R3
R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2	H1 94,62 95,646 91,891 96,216 92,86 93,063 93,383 93,383	97,389 93,864 96,142 96,494 96,176 96,826 94,646	95,088 98,116 95,981 96,135 96,631 93,428	94,501 95,984 94,709 95,244 95,619	95,212 95,553 95,865 93,316	96,758 96,808 95,494	98,552 96,153	95,782		,	
R1 R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2	H1 94,62 95,646 91,891 96,216 93,063 93,383 93,383 90,493 96,457	97,389 93,864 96,142 96,494 96,176 96,826 94,646 95,971 94,853	95,088 98,116 95,981 96,135 96,631 93,428 98,042	94,501 95,984 94,709 95,244 95,619 94,81	95,212 95,553 95,865 93,316 98,442	96,758 96,808 95,494 95,417	98,552 96,153 95,058	95,782 95,744	92,547	93,469	
R1 R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R3	H1 94,62 95,646 91,891 96,216 93,063 93,083 93,383 90,433 90,433 96,457 91,17	97,389 93,864 96,142 96,494 96,176 96,826 94,646 95,971 94,853 97,523	95,088 98,116 95,981 96,631 93,428 98,042 94,229	94,501 95,984 94,709 95,244 95,619 94,81 94,87	95,212 95,553 95,865 93,316 98,442 93,018	96,758 96,808 95,494 95,417 97,267	98,552 96,153 95,058 96,048	95,782 95,744 94,924	92,547 95,129	93,469 95,506	96,761
R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3	H1 94,62 95,646 91,891 96,216 93,063 93,063 93,383 90,493 96,457 91,17 93,079	97,389 93,864 96,142 96,494 96,826 94,646 95,971 94,853 97,523 95,617	95,088 98,116 95,981 96,135 96,631 93,428 98,042 94,229 96,531	94.501 95,984 94,709 95,244 95,619 94,81 94,679 94,97	95,212 95,553 95,865 93,316 98,442 93,018 95,773	96,758 96,808 95,494 95,417 97,267 98,444	98,552 96,153 95,058 96,048 97,263	95,782 95,744 94,924 97,678	92,547 95,129 95,943	93,469 95,506 93,433	96,761 96,792
R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3 R3	H1 94.62 95.646 91.891 96.216 93.063 93.383 90.433 90.433 94.657 91.17 93.079 91.198	97,389 93,864 96,142 96,494 96,176 96,826 94,646 95,971 94,853 97,523 95,617 94,489	95,088 98,116 95,981 96,135 96,631 93,428 98,042 94,229 96,531 94,547	94,501 95,984 94,709 95,244 95,619 94,81 94,679 94,97 94,981	95,212 95,553 95,865 93,316 98,442 93,018 95,773 93,921	96,758 96,808 95,494 95,417 97,267 98,444 97,165	98,552 96,153 95,058 96,048 97,263 96,272	95,782 95,744 94,924 97,678 96,371	92,547 95,125 95,945 97,225	9 9 9 9 9 9 3 4 9 3,433 9 3,433 9 3,224	96,761 96,792 96,004
R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3	H1 94,62 95,646 91,891 96,216 93,063 93,083 90,493 90,493 96,457 91,17 93,079 91,188 91,188	97,389 93,864 96,142 96,494 96,176 96,826 94,646 95,971 94,853 97,523 97,523 95,617 94,489	95,088 98,116 95,981 96,135 96,631 93,428 98,042 94,229 96,531 94,547 93,483	94,501 95,984 94,709 95,244 95,619 94,81 94,679 94,97 94,97 94,681 96,543	95,212 95,553 95,865 93,316 98,442 93,018 95,773 93,921 93,027	96,758 96,808 95,434 95,417 97,267 98,444 97,165 96,152	98,552 96,153 95,058 96,048 97,263 96,272 95,675	95,782 95,744 94,924 97,678 96,371 95,661	92,547 95,125 95,949 97,225 98,44	9 9 9 9 9 9 3,433 9 3,433 9 3,224 9 8,149	96,761 96,792 96,004 94,427

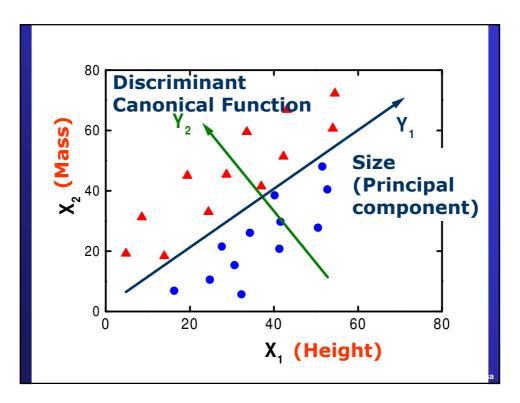





P PRIMER File Edit View Analyse Options Window Help	OSIM" in F		er v	.5	
Cot Cort+X Copy Cort+C Paste Cort+Y Clear Highlight Properties Si Labes Cor Eactors Select File: C: N Sample se R1 R1 Control of the selection of the selecti	P Factors Edit Factors el Remove Plot key Plot key Plot key R2 R2 R2 R2 R2 R2 R2 R2 R2 R3	P Factors Edit Factors	Label R1 R1 R1 R2 R2 R2 R2 R3 R3 R3 R3 R3	Sites R1 R1 R1 R1 R2 R2 R2 R2 R3 R3 R3 R3 R3 R3	
					© JPSousa

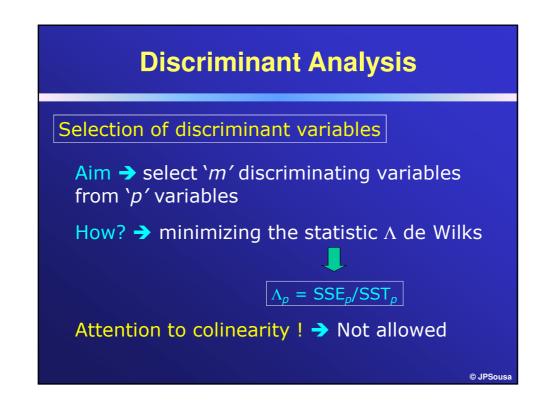

"ANOSIM" in Primer v.5	
Primer Primer NoSSIM Primer Pri	
©,	JPSousa

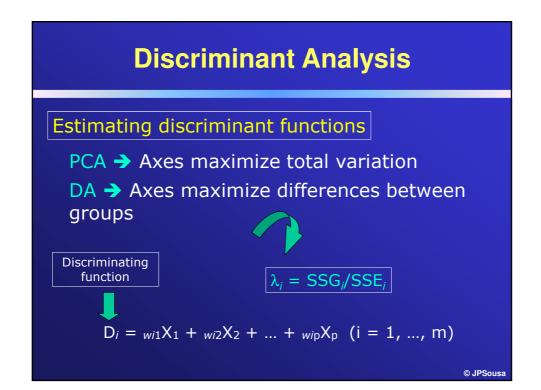


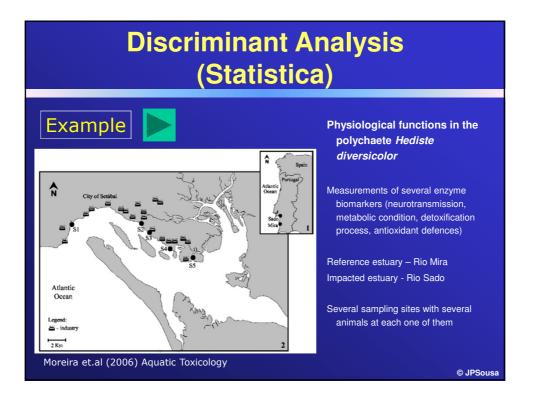


Multivariate Statistical Tools in Ecology ISCED, Lubango, March 2016

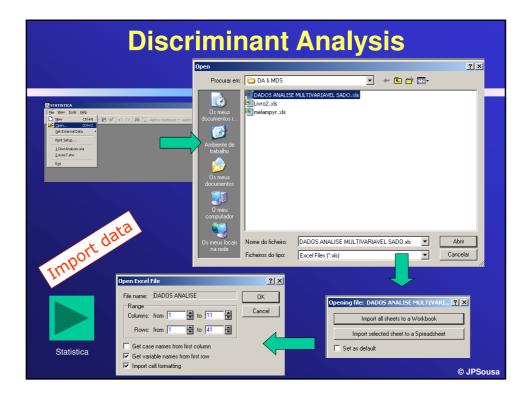
Ordination Tools II: Discriminating groups of samples/subjects Part 2

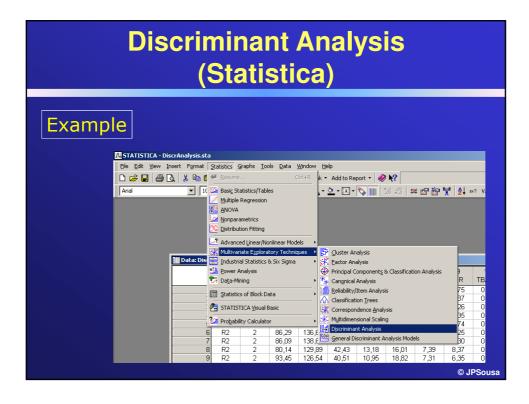

 \bigcirc

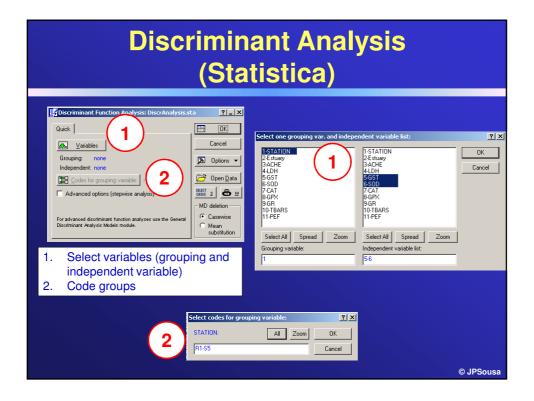


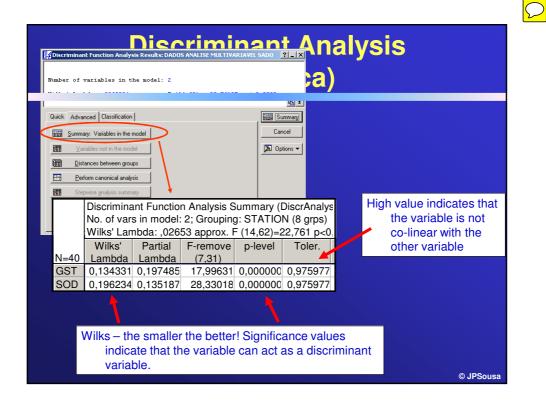


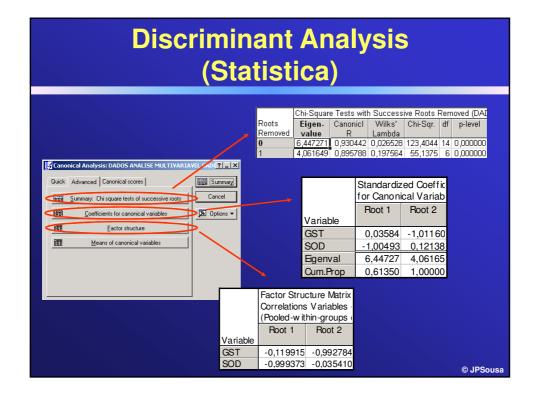
 \mathcal{O}

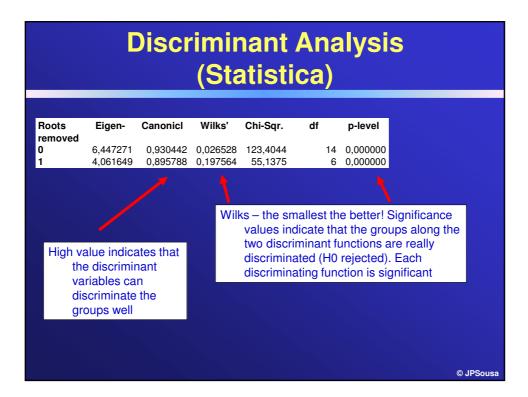

 \square

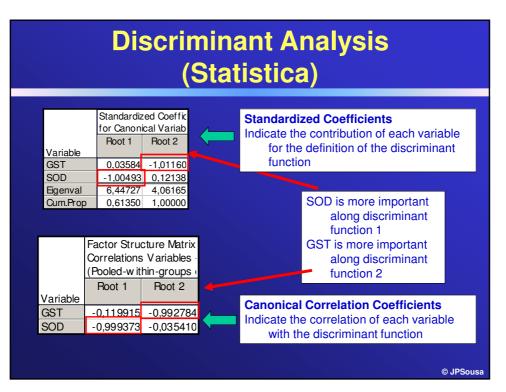


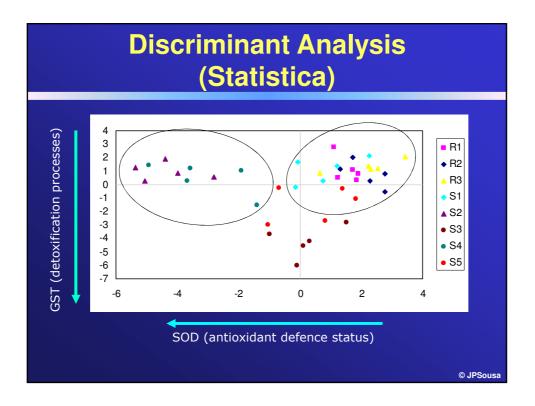


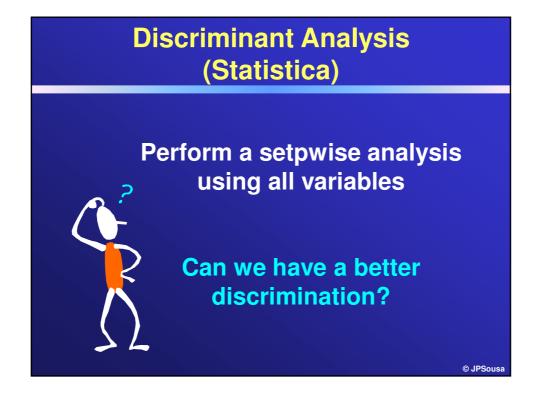



	Discriminant Analysis (Statistica)											
Exam	ole											
	STATION	Estuary	ACHE	LDH	GST	SOD	CAT	GPX	GR	TBARS		
	B1	1	81.11	169.95	42,53	14.98	13.79	7,37	7.75	0.59		
	R1	1	82,36	149,19	40,73	14,68	19,21	8,67	9,87	0,58		
	R1	1	88,46	157,54	39,95	15,46	18,29	8,95	9,26	0,54		
	R1	1	91,88	126,71	34,33	17,90	13,57	7,16	7,35	0,32		
	R1	1	88,25	155,70	42,14	17,60	18,97	7,76	7,74	0,52		
	R2	2	86,29	136,63	36,62	15,28	14,96	6,09	7,25	0,56		
	R2	2	86,09	138,67	45,02	11,20	16,82	8,35	6,30	0,65		
	R2	2	80,14	129,89	42,43	13,18	16,01	7,39	8,37	0,62		
	R2	2	93,45	126,54	40,51	10,95	18,82	7,31	6,35	0,32		
	R2	2	84,54	151,77	39,88	17,17	14,31	7,34	9,36	0,24		
	R3	3	88,36	136,63	35,70	7,88	13,70	8,02	6,10	0,42		
	R3	3	84,79	138,67	38,56	13,23	17,65	6,80	7,84	0,31		
	R3	3	87,81	129,89	39,45	12,96	17,37	8,16	6,88	0,55		
	R3	3	93,63	126,54	39,14	11,95	13,76	7,65	6,62	0,54		
	R3	3	90,06	149,45	41,22	20,14	13,83	7,74	9,27	0,41		
	S1	4	86,23	136,11	45,15	23,75	19,04	6,43	6,43	0,44		
	S1	4	92,65	135,83	39,04	17,60	13,78	6,54	8,01	0,46		
	S1	4	79,78	164,13	43,07	19,80	14,51	8,69	9,00	0,46		
	S1	4	76,52	148,61	36,09	12,99	14,27	5,92	6,40	0,51		
	S1	4	88,83	152,64	38,52	23,05	13,34	8,83	7,24	0,59		
	S2	5	91,02	214,79	42,19	46,06	23,85	9,12	6,44	0,74		
	S2	5	93,88	178,86	39,69	41,72	22,26	11,31	8,21	0,77		
	S2	5	83,59	213,75	45,53	44,91	21,79	10,96	8,75	1,15		
	S2	5	89,84	179,34	43,09	40,18	20,25	9,70	5,66	0,75	© JPSousa	



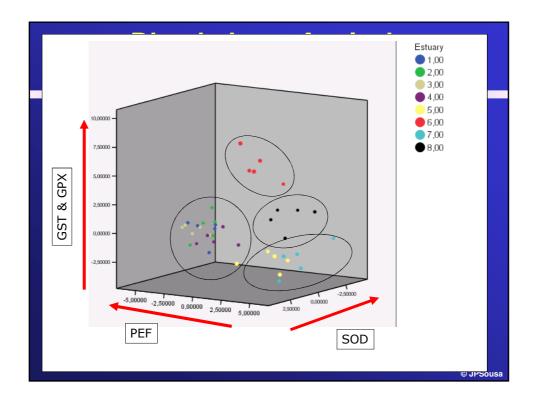






	Discriminant analysis														
				(5											
		STATIO			R2	R3	S1	S2	S3	S4	S5				
							0000 053	0,6105				27 38,07450 36,16661			
📑 Discri	Discriminant Function Analysis Results: DADOS AN						851	0,4371	14 0,000	2,634	1 53,7143	7 44,22431	36,3171	7 13 5924	19
Number	r of vari	S1 S2 S3	43,30		52,7413		37 32,778	3 0,0000	i3 35,69392 10 59,30965 i5 0,00000	5 2,1576	3 35,9473	9			
Wilks	' Lambda:	,0265284	appro:	c. F (<mark>14</mark> ,		27,63	3473	34,7965	58 36,317	17 19,400	9 2,1578	i3 41,43731 19 9,87520	0,0000	0 20,5669	92
Quick	Advanced	Classificatio	onl		•		IE-0	alues: r	+f = 2 31 (f		ALISE MU	LTIVARIAV			
		ariables in th	· ,			STATION		R1	R2	R3	S1	S2	S3	S4	S5
		s not in the m				R1			0,59145			41,95391 3			9,313
				<u> </u>		R2 R3),59145),59918	0,42348	0,42348		51,09314 3 52,03579 4			9,387
	<u>D</u> istance:	s between gr	oups	ノ -		S1		,70958	2,39643	2,55180		31,75429 3			7,773
	Perform of	canonical ana	alysis			S2				52,03579			45622, 57		34,824
888	Stenwise	analysis sum	maru			S3 S4					34,57849	57,45622 2,09021 4		40,14239	9,566 19,924
	otopinioo	Surah an	inaly	\mathbf{N}		54 S5		9.31329				34.82404		19 92/20	19,924
				*		100	Ť	,01020	5,56165	13,10112	1,11305	34,02404	0,00000	10,02420	
	p-levels (D	ADOS AN	ALISE MU	LTIVARIAV	EL SADO)									
STATION	R1	R2	R3	S1	S2	S3		S4	S5						
R1		0,559647	0,555500												
R2 R3	0,559647	0.658498	0,658498	0,107711 0.094205											
		0,656496	0.094205	0,094205	0.000000										
			0,000000	0.000000	0,000000	0,000000									
S3			0,000000		0,000000,0	- ,000000			0,000581						
S4			0,000000			0,000000			0,000003						
S5	0,000680	0,000649	0,000073	0,001836	0,000000,0	0,000581	0,0	00003						© JP	Course
														© JP	Sousa

		Di	SC				Ar ica		y	sis	
Square	d Mahalanobis	Distances	(DiscrAnal	ysis.sta)							
	R1	R2	R3	S1	S2	S3	S4	S5			
R1	0,00000	0,61053	0,61851	0,73247	43,30727			9,61372			
R2	0,61053	0,00000	0,43714		52,74130		34,79658	9,68986			
R3	0,61851	0,43714	0,00000	2,63411		44,22431	36,31717				
S1	0,73247	2,47374	2,63411	0,00000		35,69392		8,02383	<u>ا</u>		٦
S2	43,30727	52,74130		32,77863		59,30965	2,15763	35,94739		Group 1:	
S3	38,07450	36,16661	44,22431			0,00000		9,87520			
S4	27,63473	34,79658	36,31717			41,43731	0,00000	20,56692		R1=R2=R3=S1	
S5	9,61372	9,68986	13,59249	8,02383	35,94739	9,87520	20,56692	0,00000			
F-value	s; df = 2,31 (Di									Group 2:	
	R1	R2	R3	S1	S2	S3	S4	S5			
R1		0,59145	0,59918	0,70958	41,95391		26,77114	9,31329		S2=S4	
R2	0,59145		0,42348	2,39643		35,03641	33,70918	9,38705			
R3	0,59918	0,42348		2,55180		42,84230		13,16772			
S1	0,70958	2,39643	2,55180		31,75429	34,57849		7,77309		Group 3:	
S2	41,95391	51,09314	52,03579			57,45622	2,09021	34,82404		· · · · · · · · · · · · · · · · · · ·	
S3	36,88467	35,03641	42,84230		57,45622		40,14239	9,56660		S3	
S4	26,77114	33,70918		18,79471	2,09021	- /		19,92420			
S5	9,31329	9,38705	13,16772	7,7309	34,82404	9,56660	19,92420				
n-levels	(DiscrAnalysi	e eta)								Group 4:	
Pricvels	R1	R2	R3	S1	S2	S 3	S4	S5			
R1		0.559647	0.555500	0.499664			0.000000			S5	
R2	0,559647	0,000047	0.658498	0,493004	0,000000		0,000000	0.000649	l		_
R3	0,555500	0.658498	0,000+00		0,000000		0.000000	0.000043			
S1	0.499664	0.107711	0.094205	0,004200	0.000000		0.000005	0.001836			
S2	0,000000	0,000000	0,000000	0,000000	0,000000		0,140748	0.000000			
S3	0.000000	0.000000		0,000000	0.000000	0,000000	0.000000	0.000581			
S4	0,000000	0,000000	0.000000	0,000005	0,140748	0 000000	0,000000	0.000003			
S5	0.000680	0.000649			0,000000		0.000003	0,000000			
	0,00000	0,00040	0,000070	0,001000	0,00000	0,000001	0,000000			© JPS	50

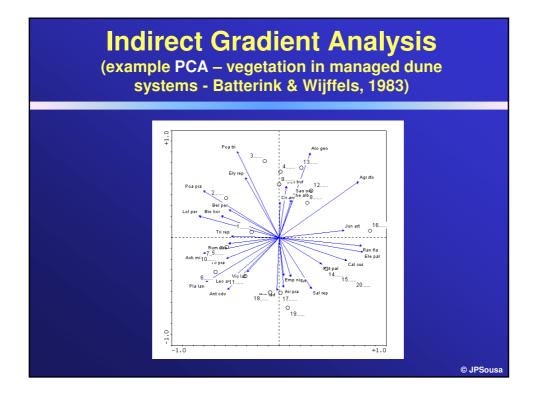


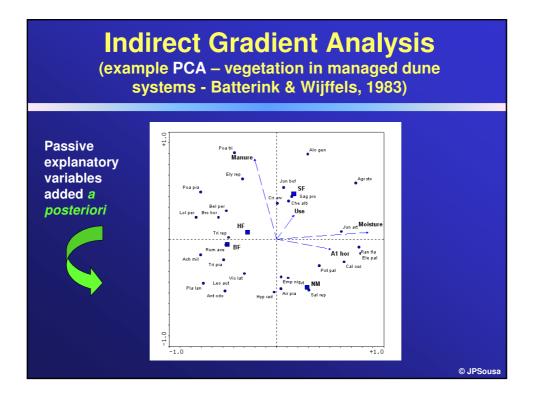
	Discriminant Analysis (Statistica)											
PEF GST SOD GPX TBARS ACHE LDH CAT	Wilks' 0,002117 0,002235 0,002240 0,002373 0,001204 0,001425 0,001274 0,001190	Partial 0,427767 0,405169 0,404305 0,381509 0,752326 0,635340 0,710864 0,760971	F-remove 4,777580 5,243232 5,262073 5,789902 1,175754 2,049863 1,452639 1,121823	p-level 0,001608 0,000888 0,000456 0,351494 0,088144 0,229325 0,380890	Toler. 0,704428 0,864383 0,809208 0,821138 0,873572 0,507946 0,605079 0,846854	1-Toler. 0,295572 0,135617 0,190792 0,178862 0,492054 0,394921 0,153146						
						ariables aro gnificant	C © JPSou	usa				

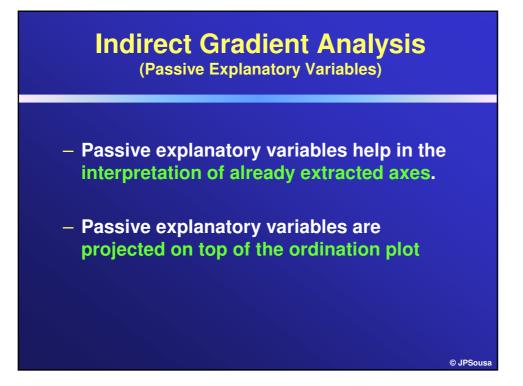
	Discriminant Analysis (Statistica)									
Roots	Eigen-	Canonicl	Wilks'	Chi-Sqr.	df	p-level				
removed 0 1 2	22,38807 10,32528 1.69329	0,978388 0,954831 0.792910	0,000905 0,021177 0.239835	217,2191 119,5001 44,2620	56 42 30	0,000000 0,000000 0.045147				
2 4 5 6	0,28793 0,15967 0,02912 0,00719	0,472819 0,371062 0,168211	0,645944 0,831928 0,964764	13,5483 5,7043 1,1120	20 12 6 2	0,852640 0,930249 0,981007				
0	0,00719	0,084518	0,992857	0,2222	2	0,894832				
				Axis	4 and hio	iher are n				
				Axis 4 and higher are not significant						

Discriminant Analysis (Statistica)									
Std coeffic	ients								
	Root 1	Root 2	Root 3						
PEF	-0.70350	0.30259							
GST	-0,00158	0,81686	0,306950						
SOD	0,48437	-0,41628	-0,710880						
GPX	0,14087	0,80706	-0,466914						
Eigenval	22,38807	10,32528	1,693290						
Cum.Prop	0,64167	0,93760	0,986131						
Factor stru	ucture matr	ix							
	Root 1	Root 2	Root 3						
PEF	-0,631882	-0,007909	-0,414397						
GST	0,156296	0,570653	0,266978						
SOD	0,503298	-0,101250	-0,619335						
GPX	0,106174	0,517622	-0,474907						
						© JPSou			

Multivariate Statistical Tools in Ecology ISCED, Lubango, March 2016

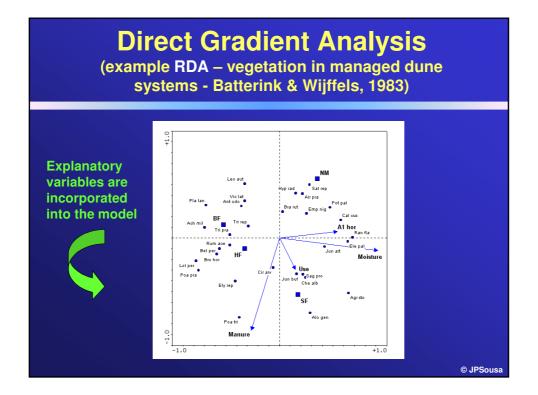

Ordination Tools III: Relationship between response variables and explanatory variables

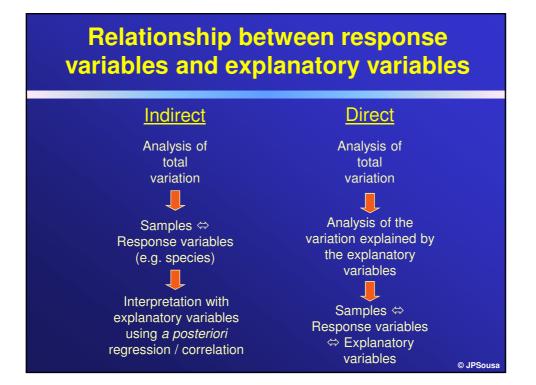

Relationship between two data sets

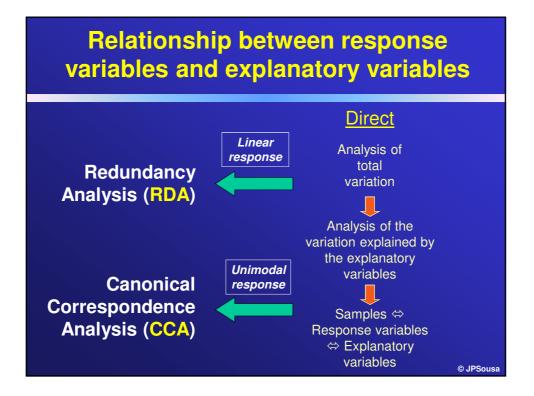

- Indirect Gradient Analysis

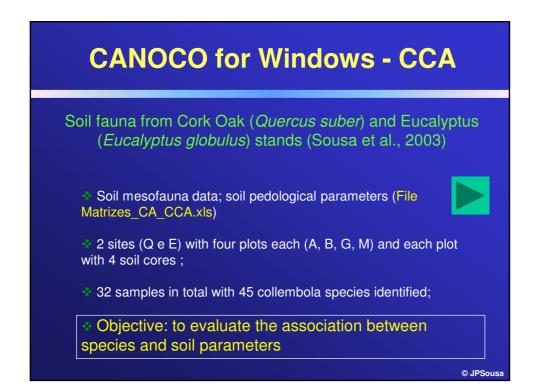
- Starts with a normal ordination where the coordinates of a particular axis can be interpreted as an environmental gradient;
- Regression techniques can be used to verify that link between response and explanatory variables;
- No direct input from the explanatory variables in the defining the positions in the ordination plot.

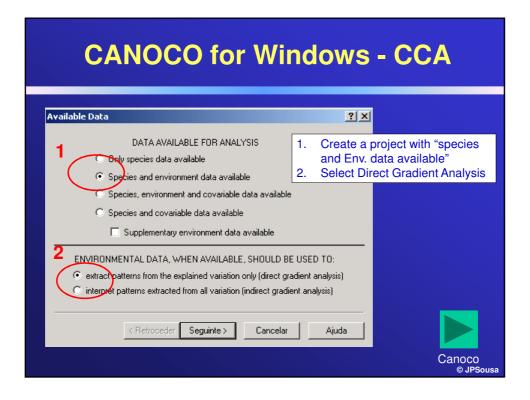
© JPSousa

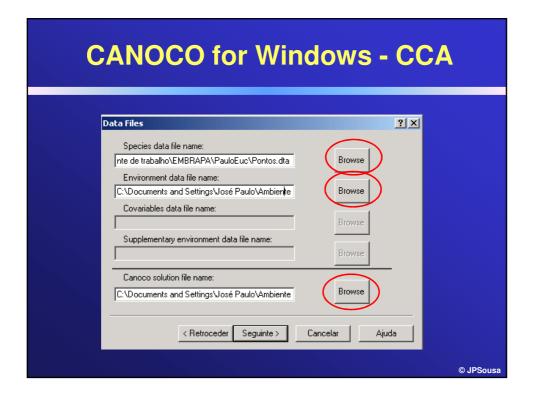


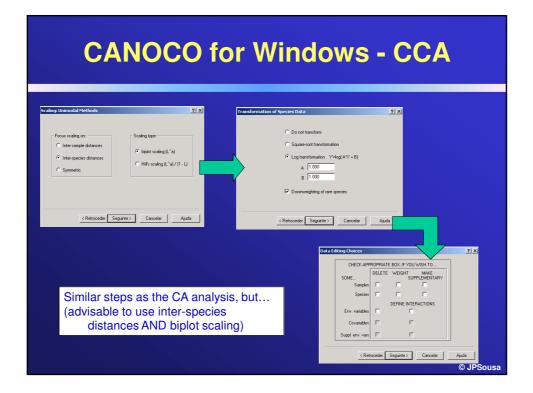


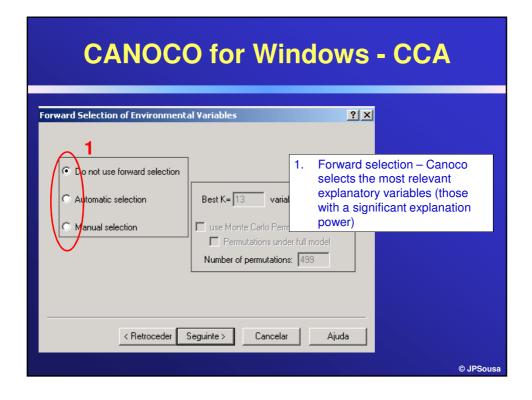

Relationship between two data sets

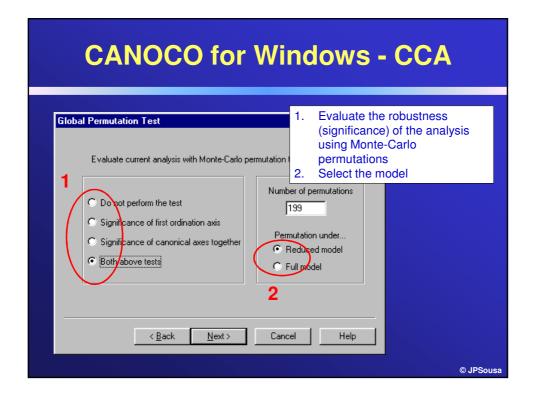

- Direct Gradient Analysis

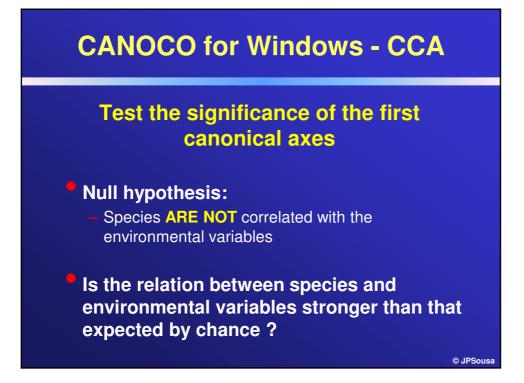

- Used to detect, interpret and predict the underlying structure of the data set based on the explanatory variables (e.g., community composition based on management, land-use, vegetation structure, etc = environmental variables);
- Starts with two datasets that are represented simultaneously in the ordination plot; the relationships between the datasets are derived from that diagram, i.e., the diagram represents the variability explained by the explanatory variables;
- There is a direct input of the explanatory variables in the analysis



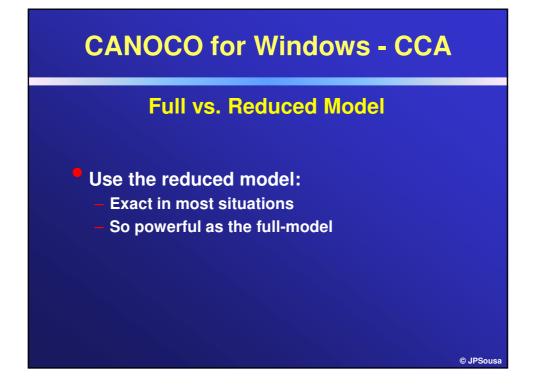


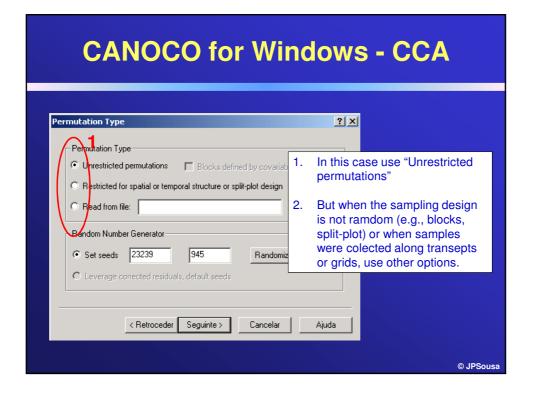


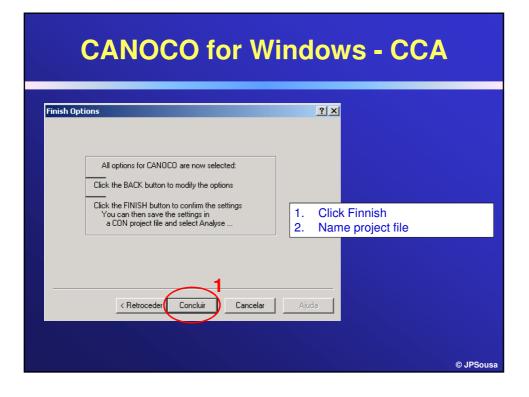


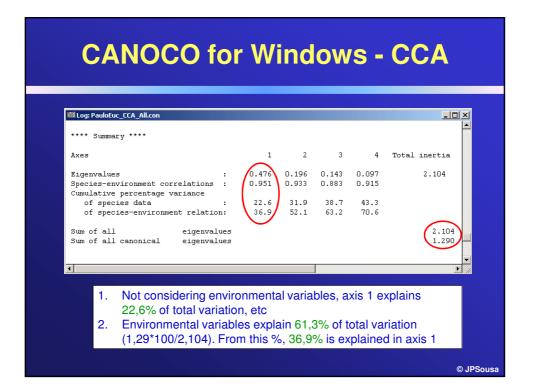


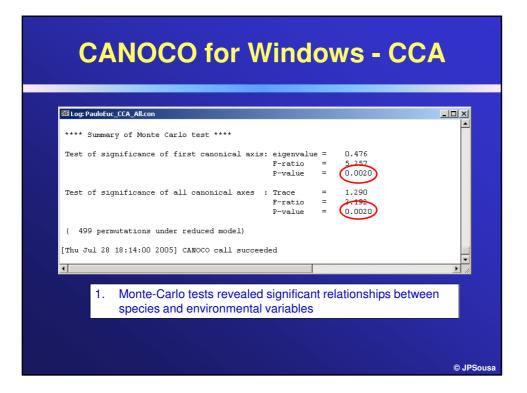
CANOC	O fo	r Win	dows	- CCA
Type of Analysis				<u>? ×</u>
	G	iradient Analysis N	1ethods	
Response Models	Indirect	Direct	Hybrid	-
Linear	C PCA	O RDA	C hRDA	
Unimodal	O CA	• CCA	C hCCA	
Unimodal (detrended)	C DCA	O DCCA	O HDCCA	
<	Retroceder	Seguinte >	Cancelar	Ajuda

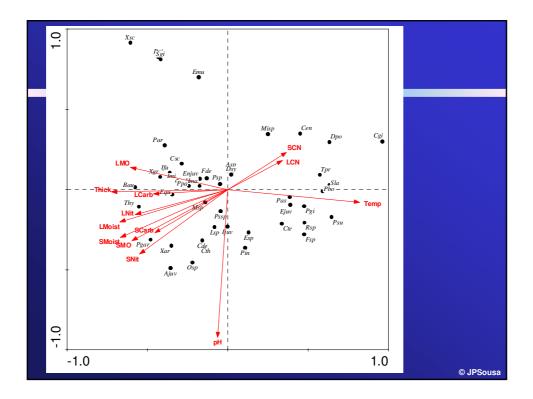


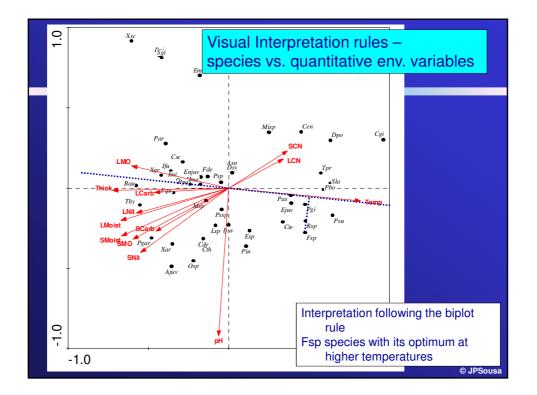


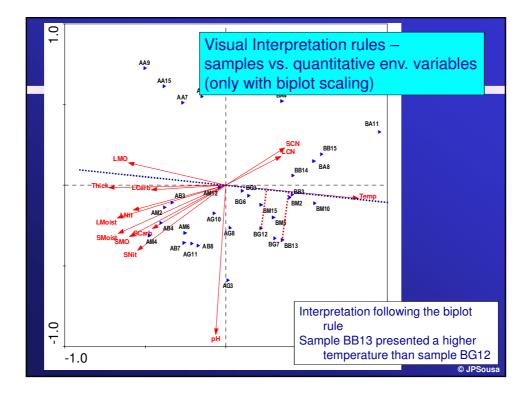


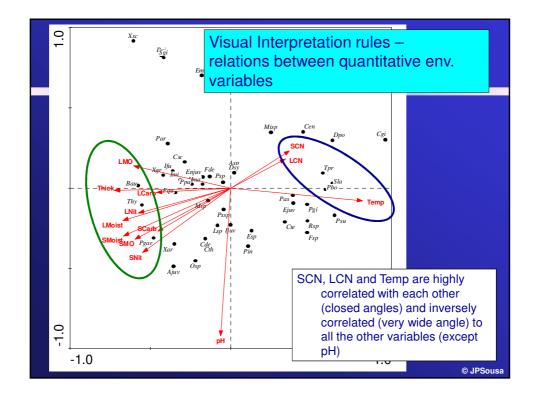


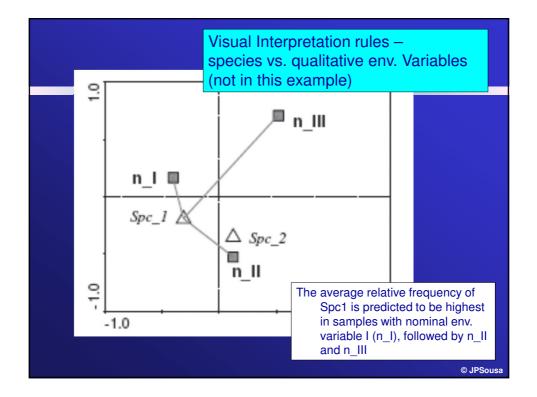


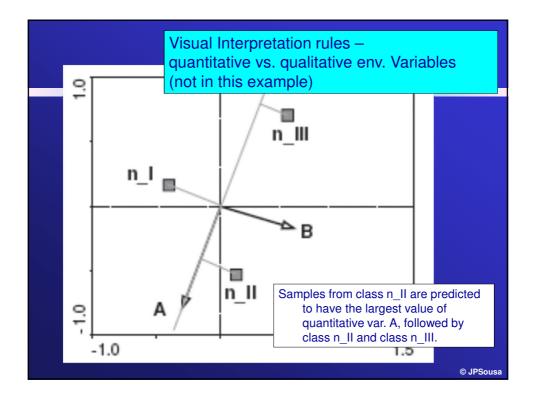


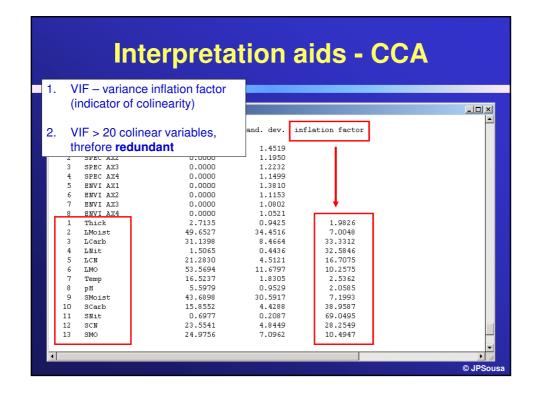






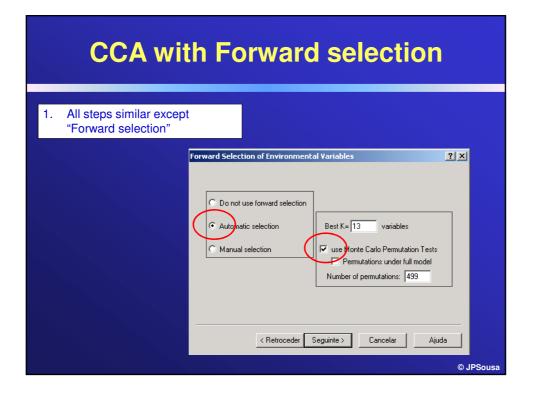




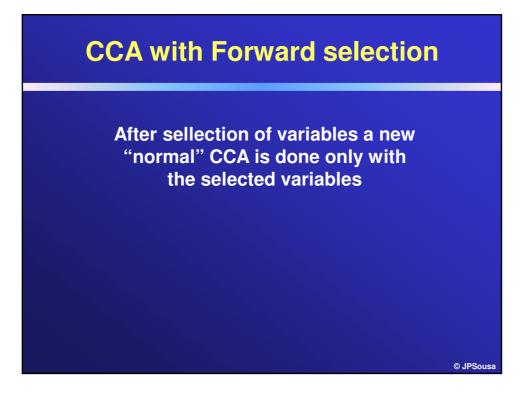


SPEC AX1 SPEC AX2 SPEC AX3 SPEC AX4 ENVI AX1 ENVI AX3 ENVI AX4 Thick LMoist LCarb LN0 LMO LMO Temp PH SMoist SCarb SNit SCN SNit SCN	$\begin{array}{c} 1.0000\\ -0.0235\\ 0.0492\\ 0.0596\\ 0.9512\\ 0.0000\\ 0.0000\\ -0.6904\\ -0.6398\\ -0.4404\\ -0.5476\\ 0.3244\\ -0.5755\\ 0.7810\\ -0.0597\\ -0.6361\\ -0.4335\\ -0.5221\\ 0.3476\\ -0.5476\end{array}$	$\begin{array}{c} 1.0000\\ -0.0741\\ -0.0293\\ 0.0000\\ 0.9333\\ 0.0000\\ -0.0140\\ -0.1894\\ -0.0255\\ -0.1450\\ 0.1576\\ 0.1289\\ -0.0748\\ -0.8617\\ -0.2791\\ -0.2517\\ -0.3766\\ 0.2165\\ -0.295\end{array}$	1.0000 0.0239 0.0000 0.8811 0.0000 -0.2021 0.5115 0.0894 0.1201 0.2511 0.0211 0.0211 0.2749 -0.0389 0.2624 -0.3031 -0.1891 -0.0488 -0.1973	1.0000 0.0000 0.0000 0.9149 -0.1378 0.1612 0.5917 0.2141 0.5584 0.3173 0.0367 -0.1225 0.0870 0.1861 0.1526 -0.0592 0.1896	$\begin{array}{c} 1.0000\\ 0.0000\\ 0.0000\\ -0.7259\\ -0.7259\\ -0.6726\\ -0.4630\\ -0.5757\\ 0.3410\\ -0.6050\\ 0.8211\\ -0.0628\\ -0.6687\\ -0.4558\\ -0.5489\\ 0.3655\\ -0.5978 \end{array}$	$\begin{array}{c} 1.0000\\ 0.0000\\ -0.0150\\ -0.2019\\ -0.273\\ -0.1554\\ 0.1796\\ 0.1381\\ -0.0801\\ -0.9233\\ -0.2991\\ -0.2991\\ -0.2696\\ -0.4035\\ 0.2320\\ -0.2199\end{array}$	
	SPEC AX1	SPEC AX2	SPEC AX3	SPEC AX4	ENVI AX1	ENVI AX2	
"Intraset correlation coefficients" (LOG file): Correlations between environmental variables and the samples scores derived from the environmental variables (SamE)							

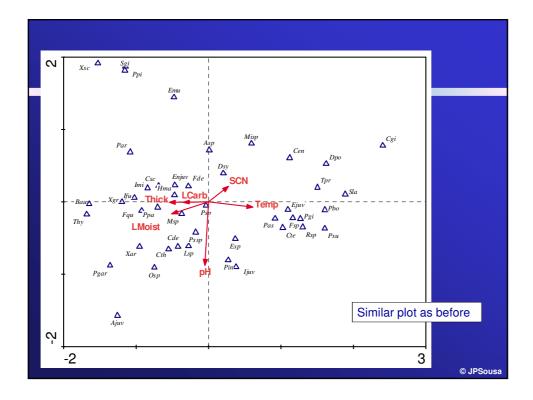
	Inte	erpret	ation a	ids - (CCA	
Log-tr	ansformation	veight	Covariable		Scaling: Dles	-2
N	NAME	AXL	A×2	AX3	AX	:4
	EIC	G 0.4757	0.1960	0.1429	0.0965	
1 2 3 4 5 6 7 8 9 10 11 12 13	Thick LMoist LNit LCN LMO Temp PH SMoist SCarb SNit SCN SMO	$\begin{array}{c} -0.3416\\ -0.3719\\ -0.4146\\ 0.2820\\ 0.4699\\ 0.2363\\ 0.4993\\ 0.2919\\ -0.2500\\ -1.2560\\ 1.4096\\ 1.2220\\ -0.0678\end{array}$	$\begin{array}{c} 0.0276\\ -0.6898\\ 0.3118\\ 0.2243\\ -0.2263\\ -0.3006\\ -0.2010\\ -1.1881\\ 0.8233\\ -0.6302\\ 0.0068\\ 0.6502\\ 0.2597\end{array}$	$\begin{array}{c} -0.11 \\ 1.31 \\ -0.57 \\ -0.08 \\ 0.08 \\ 0.61 \\ 0.51 \\ 0.55 \\ -0.08 \\ -0.12 \\ -1.27 \\ 1.25 \\ 0.62 \\ -0.25 \\ \end{array}$	20 -0 59 -0 58 1 33 1 33 -0 59 -0 59 -0 59 -0 59 -0 50 -0 53 -0 53 -0 53 -0 27 -0 11 2 54 -3 78 -2	.4806 .1122 .1800 .8059 .3578 .9634 .1700 .1194 .0853 .1764 .2106 .0815 .7503
	Coefficients sample score	derived from res (Samp) on	nts" (SOL file) multiple regressi the standardized ntal variables are	on of the spec environmenta	al variables.	© JPSous

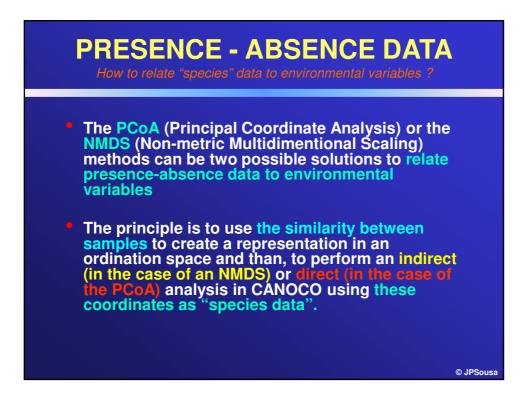

Interpretation aids - CCA

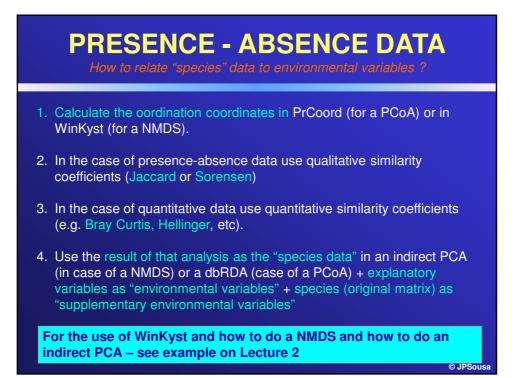
Auxiliary tables:

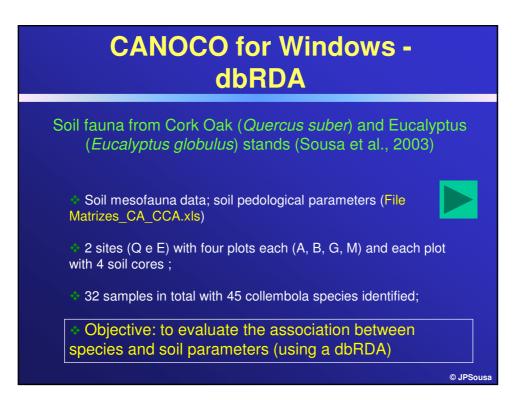

Both the Canonical coefficients (SOL file) and the Intraset correlation coefficients (LOG file) are used in the interpretation of the community structure based on the environmental variables (they measure the contribution of each environmental variable).

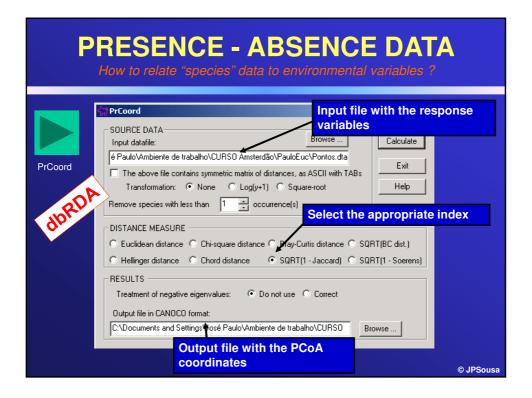
Be careful with MULTICOLINEARITY !

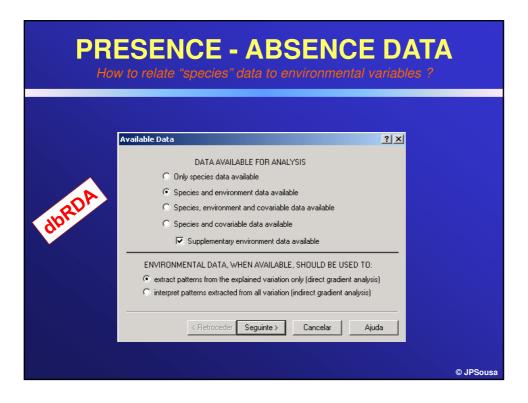

In case of Correlated environmental variables DO NOT USE THE CANONICAL COEFFICIENTS !

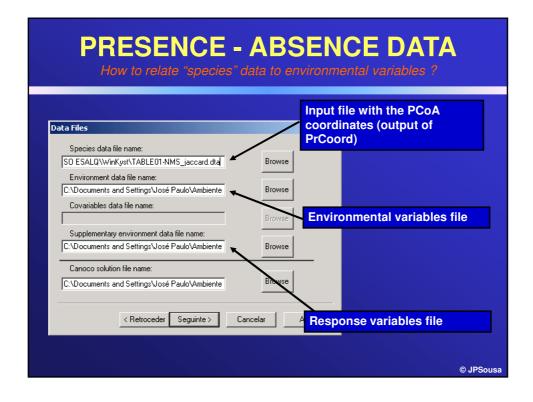

Resulta	idos da Forward s	election		
/ariable	Marginal Effects Var.N Lambda1			Manufact attacts
ranable Temp	Var.N Lambda1 7 0.34			Marginal effects
.Moist	2 0.28			Variables are ordered seconding
Thick	1 0.28			Variables are ordered according
SMoist	9 0.26			to the variation they explain
MO	6 0.21			to the variation they explain
SMO	13 0.21			
SNit	11 0.21			
Nit	4 0.19			Conditional effects
ы	8 0.18			
Carb	3 0.16			Variables are ordered according
SCarb	10 0.15			
CN	5 0.12			to their entrance in the model
SCN	12 0.12			
	Conditional Effects			Differences between effects are due
Variable	Var.N LambdaA		F	
Гетр	7 0.34	0.002	5.86	to correlations between variables. In
Moist	2 0.19	0.002	3.39	and of unconvolated workships, the
oH Thield	8 0.17	0.002	3.51	case of uncorrelated variables, the
Thick LCarb	1 0.09 3 0.08	0.016 0.040	1.77 1.60	result would be the same
SCN	12 0.07	0.040	1.53	
SMoist	9 0.06	0.168	1.26	
SCarb	10 0.05	0.266	1.19	
_CN	5 0.05	0.236	1.18	
_Nit	4 0.06	0.196	1.22	
SNit	11 0.05	0.440	1.03	
MO	6 0.04	0.386	1.05	
SMO	13 0.04	0.664	0.83	

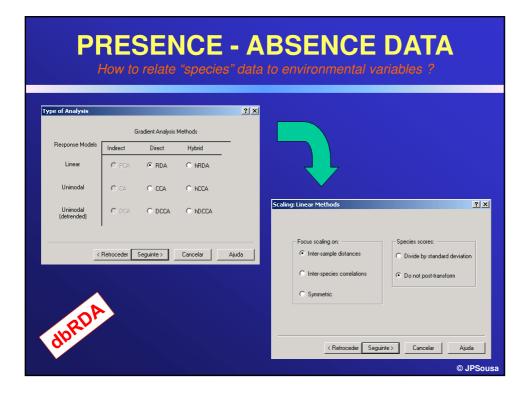



Log: P	auloEuc_CCA_F	52.con					
N	name	(weighted) mean	stan	d. dev.	inflati	on facto	r and a second
1 2 4 5 6 7 8 1 2 3 7 8 12	SPEC AX1 SPEC AX2 SPEC AX3 ENVI AX1 ENVI AX1 ENVI AX3 ENVI AX4 Thick LMoist LCarb Temp pH SCN	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 2.7135\\ 49.6527\\ 31.1398\\ 16.5237\\ 5.5979\\ 23.5541 \end{array}$		1.4521 1.2198 1.2457 1.2503 1.3555 1.0730 1.0395 0.9425 34.4516 8.4664 1.8305 0.9529 4.8449	[No (1.5309 1.8448 1.6835 1.5847 1.1437 1.1420	Environmental variables explain 44,5% of total variation
Axes	3ummary ***⁺		1	2	3	4	(0,938*100/2,104). [™] From this, 48,9% is
Specie		: ent correlations :	0.459 0.936	0.182 0.906	0.131 0.861	0.074 0.831	explained in axis 1
of of Sum of	species dat species-env	vironment relation: eigenvalues	21.8 48.9	30.4 68.3	36.7 82.3	40.2 90.3	2.104 0.938

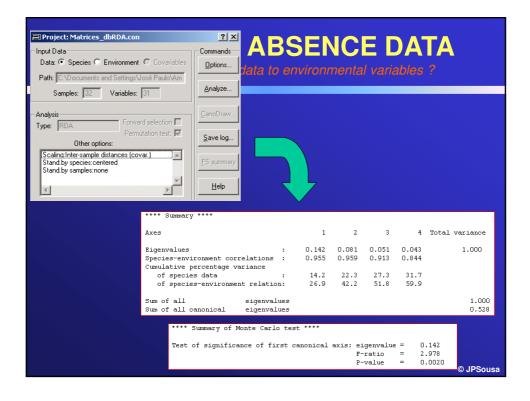


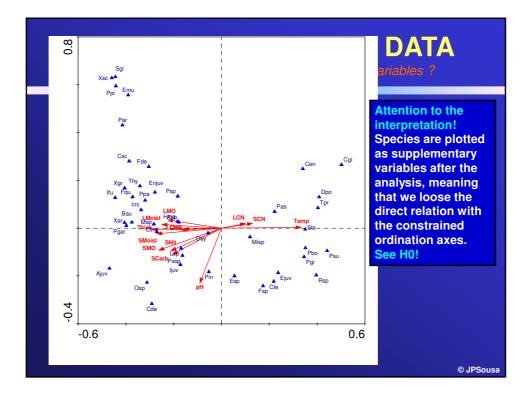


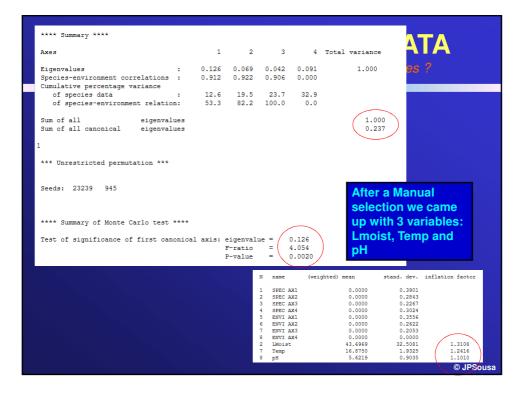


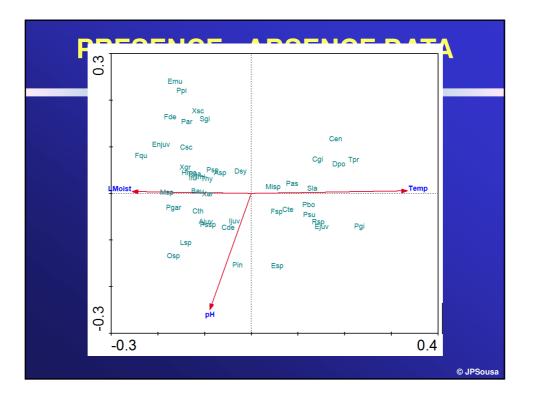




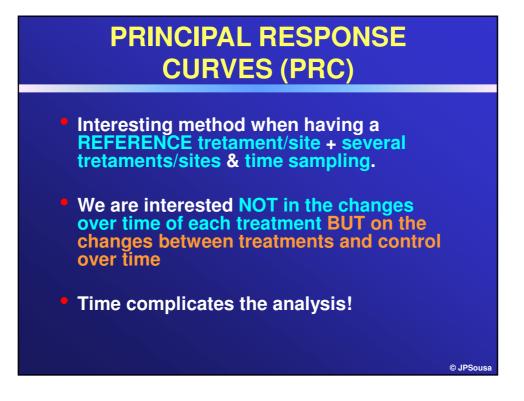


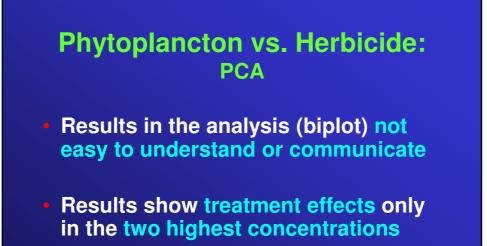


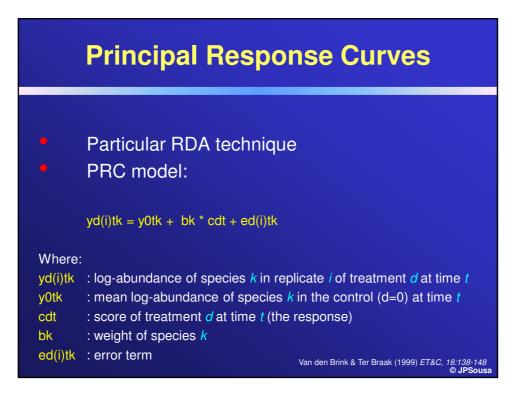

PRESENCE - A How to relate "species" data t		
Transformation of Species Data ? X © Do not transform © Square-toot transformation © Log transformation Y=log(AY+B) A B Downweighting of rare species <th>Centering and Standardization SAMPLES C None C Center by sample C Standardize by norm C Center and standardize</th> <th>SPECIES None Center by species Cather and standardize Center and standardize Standardize by error variance</th>	Centering and Standardization SAMPLES C None C Center by sample C Standardize by norm C Center and standardize	SPECIES None Center by species Cather and standardize Center and standardize Standardize by error variance
	< Retrocede	r Seguinte> Cancelar Ajuda © JPSousa

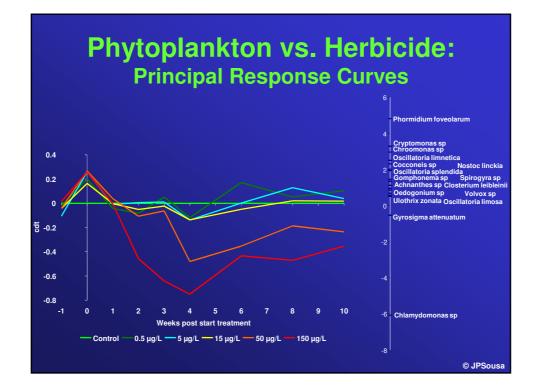


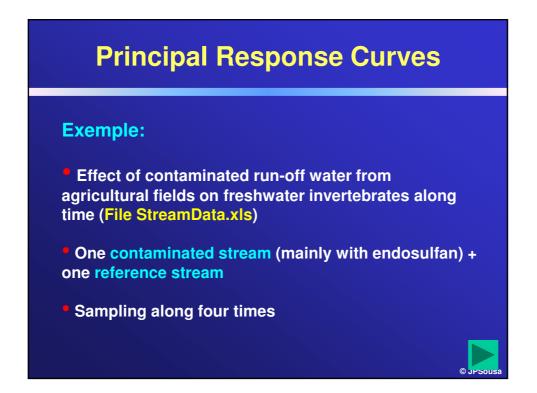
	ABSENCE DATA a to environmental variables ?
Global Permutation Test ? × Evaluate current analysis with Monte-Carlo permutation test? C Do not perform the test C Significance of first ordination axis C Significance of canonical axes together	
Reduced model Reduced model C Both above tests C Full model C Full model C Retroceder Seguinte > Cancelar Ajuda	Permutation Type 2 X Permutation Type O Unvesticited permutations Blocks defined by covariables Restricted for spatial or temporal structure or split-plot design Read from file: Browse.
H0: No influence of env. variables on community composition	Random Number Generator Set seeds 23233 345 Randomize C Leverage corrected residuals, default seeds Retroceder Seguinte > Cancelar Ajuda
	© JPSousa

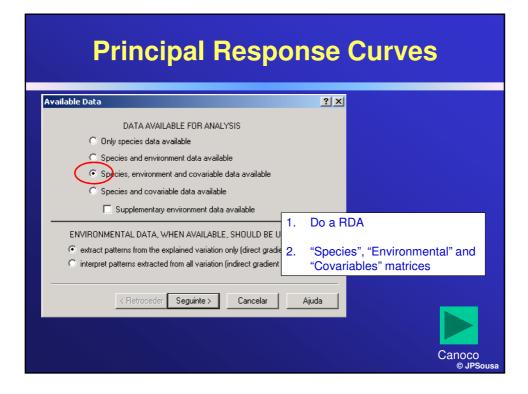


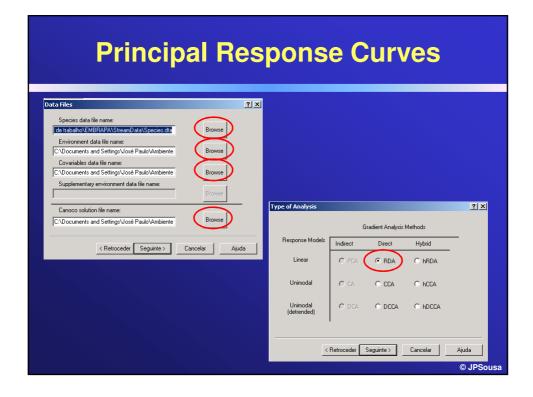


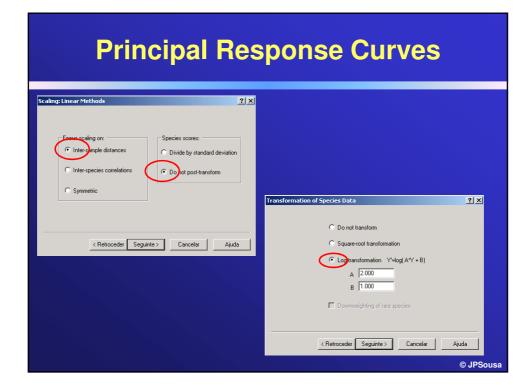


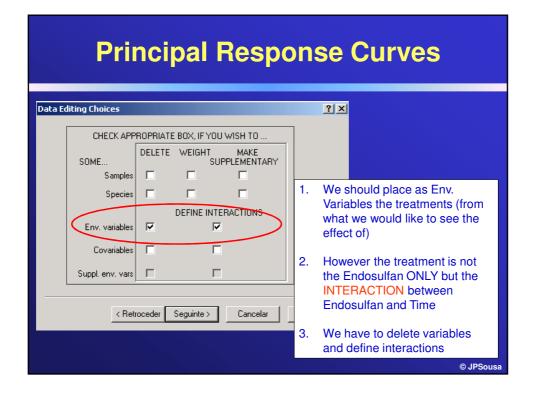


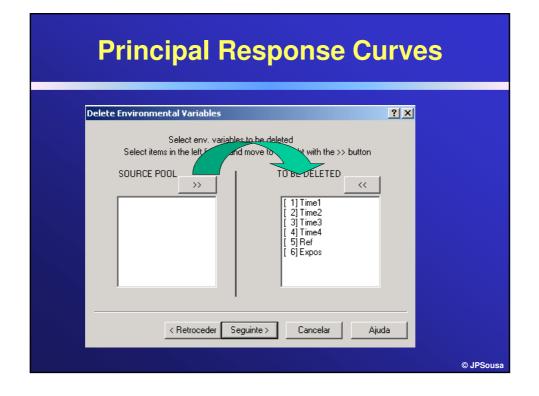


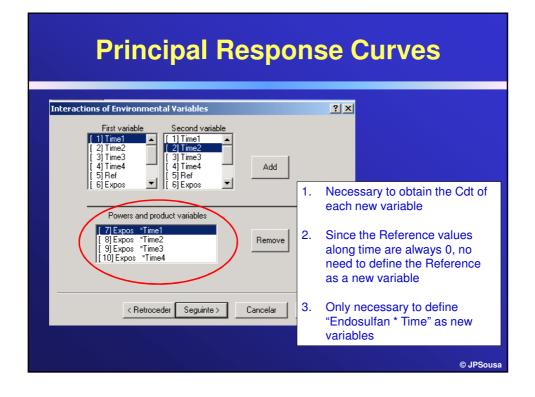


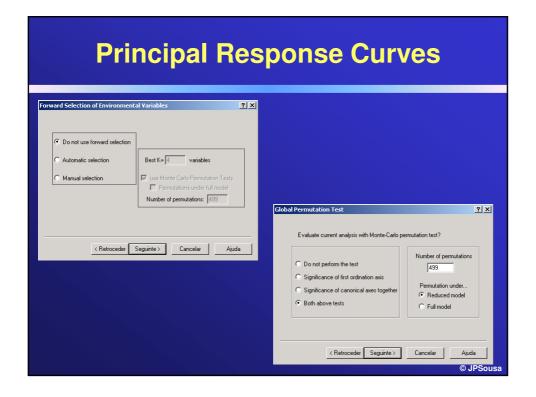

 Results allow some interpretation back to species level



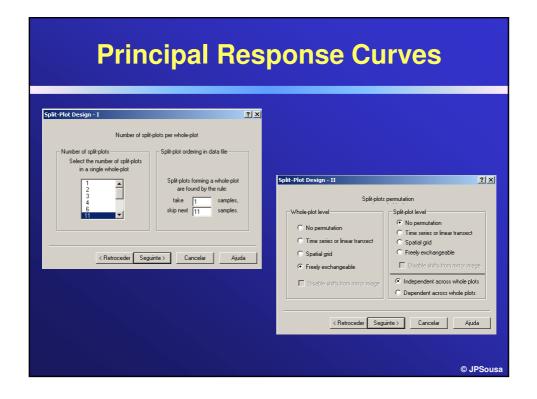


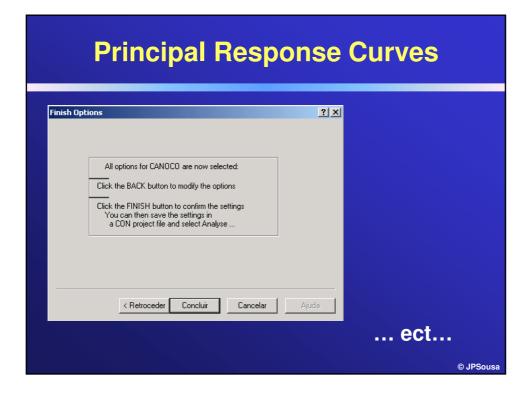


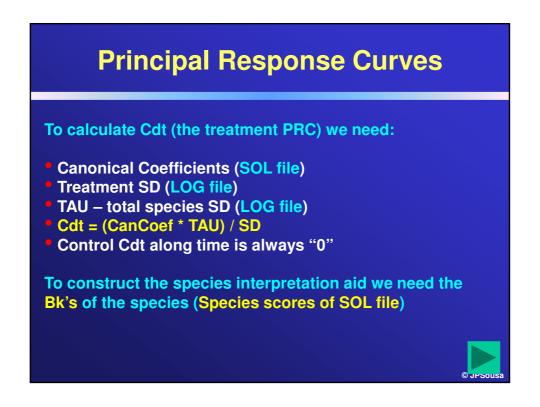


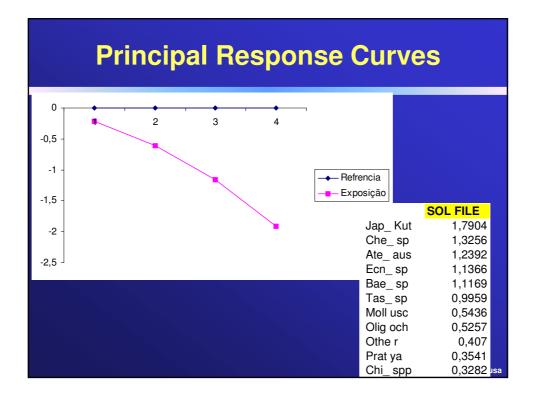


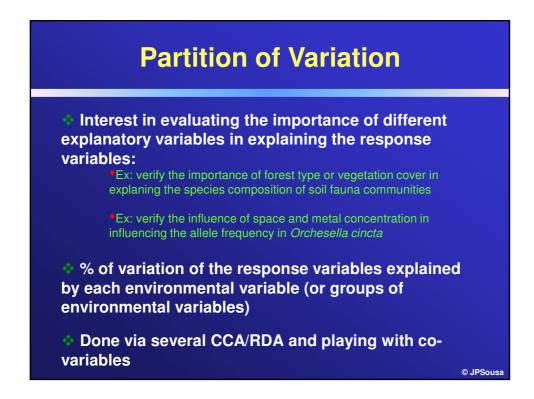
	Response Curv	ves
Centering and Standardizat	ion ?×	
SAMPLES None C Center by sample Standardize by norm C Center and standardize	SPECIES None Center by species Standardize by norm Center and standardize Standardize by error variance	
< Retroce	eder Seguinte > Cancelar Ajuda	
		© JPSousa

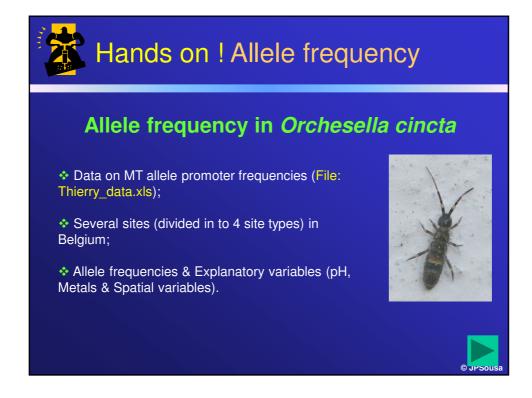


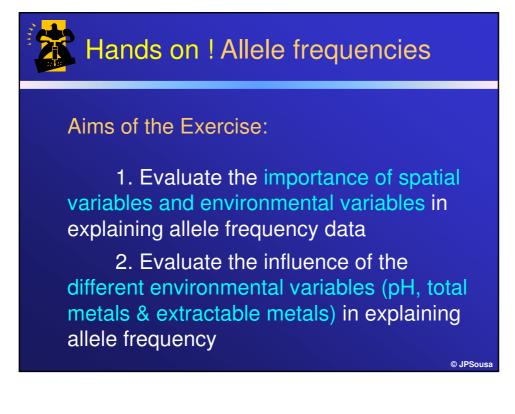


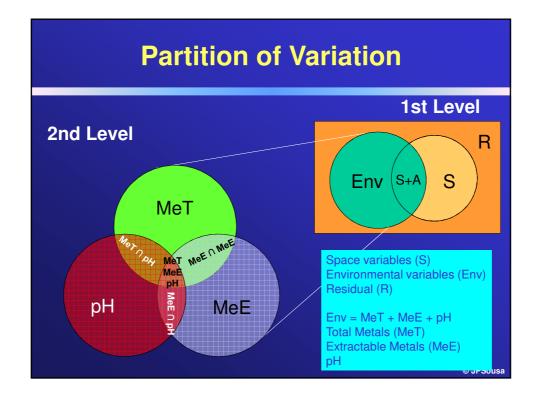


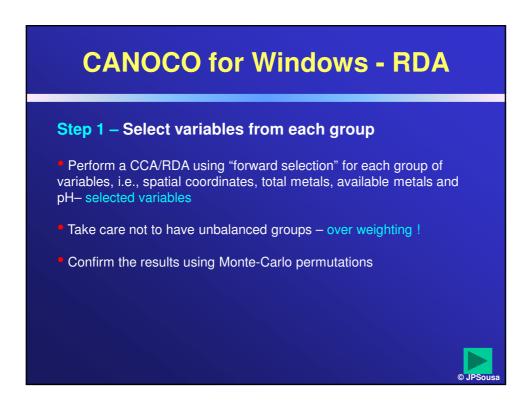

Principal Res	oonse Curves
Permutation Type	Permutation Restrictions
Permutation Type Urrestricted permutations Blocks defined by covariables Restricted for spatial or temporal structure or split-plot design Browse Read from file: Browse Random Number Generator Set seeds Set seeds 13189 29720 Randomize C Leverage corrected residuels, default seeds	Select type of restriction on the permutations Time series or line transects Disable random shifts of mirror image Rectangular spatial grid Split-plot design
 In this case we cannor randomly permutate the samples, since they a grouped in treatments So, we define the whom 	re
and we permutate sar between each whole p	nples






Principal Response Curves					
SD TAU RegCoef Cdt Exp*Time1 0.2836 1.33447 0.0465 0.218804					
Exp*Time2 0,2836 1,33447 0,1304 0,613593					
Exp*Time3 0,2836 1,33447 0,2478 1,166014					
Exp*Time4 0,2836 1,33447 0,4078 1,918889					
Cdt = RegCoef*TAU/SD					
Partição Variabilidade LOG FILE					
% Tempo 24,7					
% Tratamento 22,6					
% Residual 52,7					
**** Summary of Monte Carlo test **** LOG FILE					
Test of significance of first canonical axis: eigenvalue = 0.175					
F-ratio = 18.189					
P-value = 0.0020					
©.	JPSousa				





CANOCO for Windows - RDA

Step 2 – Perform variance partition on 1st level Use only selected variables; Species matrix is always the same

 Perform a CCA/RDA with all selected environmental and spatial variables (no co-variables) – % total var. explained (Env + E&S + S)

Perform a CCA/RDA with all selected environmental variables (spatial variables as co-variables) – Env

Perform a CCA/RDA with all selected spatial variables (environmental variables as co-variables) – S

Calculate shared variance (E&S) by the difference

CANOCO for Windows - RDA

Step 3 – Perform Level 2 decomposition of variance Use only selected variables; Species matrix is always the same

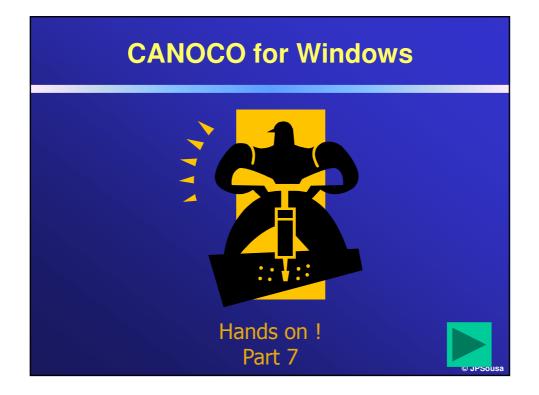
• Use the same principle to calculate each partition of the variation

 Do not forget to use ALWAYS space variables as co-variables in the analysis

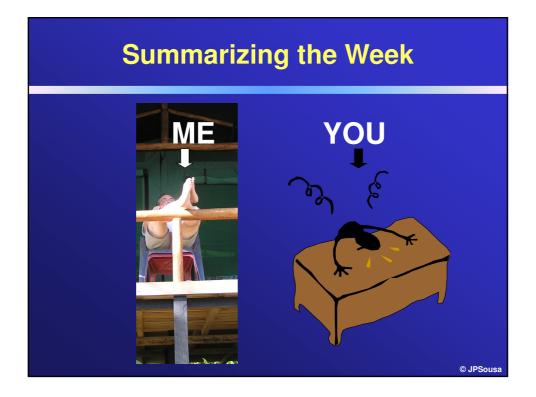
 Variables entering as co-variables are those we which to rule out their influence

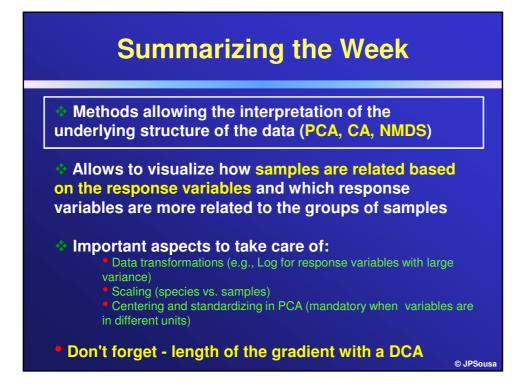
CANOCO for Windows - RDA

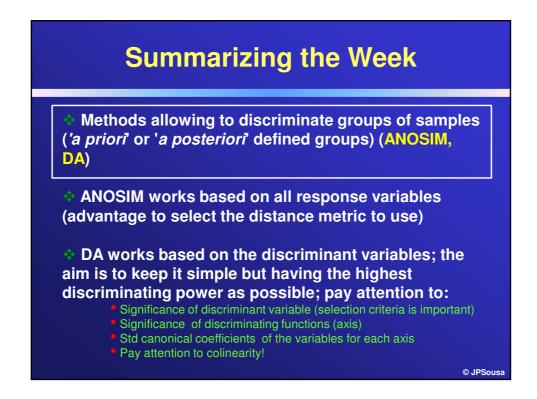
Example

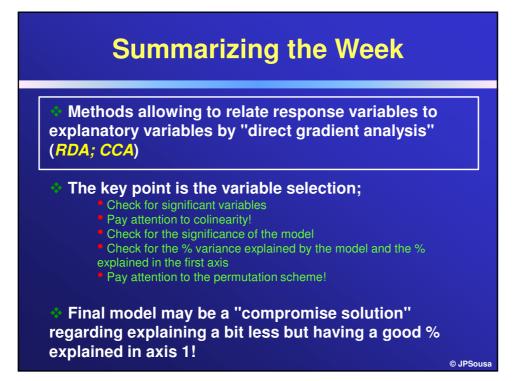

Calculate %var. explained by MeT entering into account with the interaction with other variables (green circle)

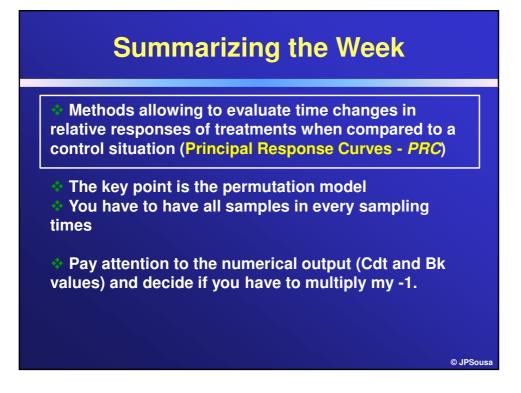

Environmental matrix: Selected MeT; <u>Co-variable matriz: space variables</u>


Exemple


Calculate %var. explained **ONLY** by MeT, not entering into account with the interaction with other variables (part of the green circle)


Environmental matrix: Selected MeT; Co-variable matriz: space variables + selected MeE + pH





Summarizing the Week

Methods allowing to the contribution of different groups of explanatory variables in explaining the response variables (*Decomposition of variance*)

• STEP 1 is variable selection (pay attention to the unbalanced number of variables in each group). Selection criteria is the same as in any RDA/CCA

 STEP 2 is to verify the influence of Space and Environment (level 1 of decomposition)

 STEP 3 is to verify the influence of the different groups of Env variables (level 2 of decomposition).

© JPSousa

In the SOLUTION file

Spec: Species scores – Species scores

Samp: Sample scores – Samples scores derived from species scores. Point "ORIGIN" represents the origin in the original species space before centering has been applied

CFit: Cumulative fit per species as fraction of variance of species – Relative contribution of each axis to the variance of that species. A "%EXPL" represents the Cfit considering all axes together.

SqRL: Squared residual length per sample with s axes - distance between sample point and its location in the s-dimentional plane (the lower the better). The "%FIT" represents how well the samples fit into the s-dimentional plane.

Regr: Regression/canonical coefficients for standardized variables – Are the coefficients derived from multiple regression of the species-derived sample scores (Samp) on the standardized environmental variables. Unstable when environmental variables are correlated to each other

tVal: t-values of regression coefficients – t-values for the Regr. When lower than 2.1 implies that the variable does not contribute much to the fit of the species data. This is important when selecting a sub-set of variables explaining the species data (another way as doing a forward selection of environmental variables). FR EXPLAINED – the fraction of the variance explained by the axis (= to variance expl in the summary in SOL file)

StBi: Species coordinates for t-value biplot

EtBi: Environmental coordinates for t-value biplot

CorE: Inter-set correlations of environmental variables with axes – Correlation between the environmental variables with the samples scores derived from species data (Samp). FR EXTRACTED – the fraction of the variance of Env.Variables extracted by each axis

BipE: Biplot scores of environmental variables -

CenE: Centroids of environmental variables (mean.gt.0) in ordination diagram -

SamE: Sample scores which are linear combinations of environmental variables - Samples scores derived from environmental variables. The "%FIT" represents how well the samples fit into the s-dimentional plane.

In the LOG file

SPEC AX1 – Axis (representing the sample scores) derived from species data ENV AX1 – Axis (representing the sample scores) derived from environmental data Corr "Env.Var" vs. "SPEC AX1" – Inter-set correlations (=CorE on SOL file) Corr "Env.Var" vs. "ENV AX1" – Intra-set correlations Corr "SPEC AX1" vs. "ENV AX1" – Species-environmental correlation

Some important literature

Multivariate Analysis of Ecological Data using CANOCO Jan Lepš & Petr Šmilauer Cambridge University Press

1ultivariate Analysis of cological Data using CANOCO

> Data Analysis in Community and Landscape Ecology <u>R. H. G. Jongman, C. J. F. Ter Braak, O. F. R. van</u> <u>Tongeren</u> "

