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Abstract: A comprehensive river basin assessment is key to integrated land and water resources management (ILWRM), 
which is based on an integrated system analysis to identify interacting hydrological processes that are driven by landscape 
features and socioeconomic development. Software toolsets like RBIS (River Basin Information System), GRASS-HRU, 
and the hydrological modelling system JAMS/J2000 were used and further developed for basin assessments and modelling 
of hydrological process dynamics and other environmental processes in selected catchments in southern Africa. These are 
the Gaborone Dam catchment (Botswana, South Africa), the Verlorenvlei catchment (South Africa), and the Luanginga 
catchment (Angola, Zambia). All of these catchments respond very sensitively to changes in climate and land management, 
revealing additional issues like a strong decline of infl ow (Gaborone Dam) or a decline of usable groundwater resources 
(Verlorenvlei). Further, extensive wetland areas in the Upper Zambezi (Luanginga) respond strongly to changes in hydro-
climatic conditions and land management. In this study, newly developed and improved simulation components for repre-
senting processes with a strong local impact on the hydrological conditions such as fl oodplain inundation, irrigation, small 
farm dams, and contour bank farming were used to more precisely simulate the hydrology of the respective basins. After 
successful model validation and an improved understanding of catchment dynamics, the models were used as a platform 
for diff erent land or climate change analysis. Taking the RCP 8.5 scenario based on EC-Earth and ECHAM, downscaled 
by REMO, into account, the Luanginga catchment showed a strong decrease in runoff  generation, inundation extent, and 
groundwater recharge. For the Kruismannsrivier, a sub-catchment of the Verlorenvlei, the relation between contour farming 
and related eff ects on surface/subsurface runoff  processes and related parameters were revealed through modelling. These 
fi ndings could also be projected to the Gaborone Dam catchment, in which the infl uence of small farm dams spread over the 
catchment could be shown by modelling.

Resumo: Uma avaliação abrangente da bacia hidrográfi ca é essencial para a gestão integrada dos recursos terrestres e hí-
dricos (ILWRM), a qual é baseada numa análise integrada do sistema para identifi car processos hidrológicos em interacção 
que são impulsionados pelas características da paisagem e o desenvolvimento socioeconómico. Ferramentas de software, 
tais como RBIS (River Basin Information System), GRASS-HRU e o sistema de modelação hidrológica JAMS/J2000, 
foram utilizadas e desenvolvidas para avaliações de bacias e modelação de dinâmicas de processos hidrológicos e outros 
ambientais em bacias selecionadas na África Austral. Estas são a bacia de Gaborone Dam (Botswana, África do Sul), bacia 
de Verlorenvlei (África do Sul) e bacia de Luanginga (Angola, Zâmbia). Todas estas bacias hidrográfi cas são muito sensíveis 
a alterações no clima e na gestão das terras, revelando problemas adicionais como um forte declínio no infl uxo (Gabarone 
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Introduction

Background
Sustainable water management in semi-
arid areas is a challenge from various 
perspectives. Given the projected chang-
es in climate as well as ongoing popula-
tion growth and associated demands for 
food and energy production that result in 
land management changes, a key chal-
lenge in the sub-Saharan countries is 
to secure water at suffi  cient quality and 
quantity for both the stability of ecosys-
tems, with their requisite functions and 
services, and for human use. Changing 
conditions will severely infl uence the 
highly variable hydrological pattern in 
southern African catchments, includ-
ing, for example, increasing extremes, 
changing groundwater recharge patterns, 
or increasing water extraction and pol-
lution. These eff ects, in turn, will create 
even more pressure on ecosystems, exist-
ing and future land management, socio-
economic development, and biodiversity. 
Consequently, southern Africa is sus-
pected to be strongly aff ected by global 
climate change and shows a high climate 
vulnerability and risk (Miola & Simonet, 
2014), with climate extremes presumed 
to intensify in frequency and magnitude 
(SREX, 2012). Due to recent droughts 
resulting from an El Niño event, water 
managers are challenged with questions 
such as: Can we cope with the demands 
on water (e.g., water shortages in Gabo-
rone or Windhoek; Allgemeine Zeitung, 
2016; Mmegi, 2016) or can we provide 

enough energy to further develop south-
ern African economies (e.g., lack of pro-
duction at Lake Kariba; IGC, 2016; New 
York Times, 2016)? To manage such 
interrelated phenomena in data-scarce 
regions like southern Africa, innovative 
modelling techniques can be successfully 
applied. 

Precipitation in the semi-arid regions 
of southern Africa is highly variable; 
rainfall is of relatively short duration, 
highly localised, and often occurs with 
diff erent intensities (Hughes, 2007). 
Various studies over the previous dec-
ades have shown that extreme rainfall 
events make up a signifi cant share of the 
total annual precipitation (e.g., Mason et 
al., 1997; Güntner, 2002; van Wilgen et 
al., 2016). Highly variable precipitation 
events also cause a strong variability 
in the discharge behaviour of rivers in 
southern Africa (e.g., Mazvimavi & Wol-
ski, 2006; Steudel et al., 2013a; Kusan-
gaya et al., 2014). Partly due to this high 
variability, the runoff  at the west coast of 
Western Cape province is most sensitive 
to climate change all over South Africa 
(Schulze, 2000). In addition, low lati-
tudes and high radiation lead to high an-
nual mean temperatures and therefore to 
a high potential evapotranspiration (e.g., 
Alexander, 1985; Steudel et al., 2013a, 
2013b; Engelbrecht et al., 2015) which 
may result in severe droughts in years 
with only small amounts of rainfall. In 
areas aff ected by unsustainable manage-
ment practices, climatic and hydrological 
extremes increase already existing trends 

towards desertifi cation, erosion, and a 
related loss of biodiversity, water, and 
food insecurity (Meigh, 1995; Hughes, 
2007; Wheater, 2008). To represent the 
complex interacting natural and human-
induced drivers in hydrological models 
in an appropriate, process-oriented way, 
advanced and adaptive modelling tools 
and methods are needed (Parida et al., 
2006; Wheater, 2008). 

Objectives
The aforementioned challenges are pre-
dominant in the three pilot catchments 
investigated in this study, all located in 
semi-arid southern Africa (Fig. 1). The 
overall aim of this work, which was em-
bedded in SASSCAL Task 18, was the de-
velopment of eco-hydrological computer 
models that are tailored to the specifi c 
conditions in the selected river basins, 
both in terms of dominant processes and 
data availability. Further, these models 
were required to represent eco-hydrolog-
ical and anthropogenic processes using 
physically based, conceptual approaches 
in order to make them applicable for as-
sessing the impacts of land management 
and climate change, and thus to provide a 
basis for informed water resources man-
agement in the selected pilot catchments.

To achieve these objectives, rainfall-
runoff  dynamics of the often data-poor 
areas were reproduced by utilising the in-
tegrated, process-based, and spatially dis-
tributed modelling system JAMS/J2000 
(Kralisch & Krause, 2006). The fi rst ob-
jective was to simulate the  undisturbed 

Dam) ou um declínio nos recursos hídricos subterrâneos utilizáveis (Verlorenvlei). Além disso, extensas áreas de zonas hú-
midas no Zambezi Superior (Luanginga) respondem fortemente a alterações nas condições hidro-climáticas e na gestão das 
terras. Neste estudo, foram utilizados componentes de simulação recentemente desenvolvidos e melhorados para representar 
processos com um forte impacto local nas condições hidrológicas, tais como inundação de várzeas, irrigação, pequenas 
barragens agrícolas e agricultura de contorno, para simular com maior precisão a hidrologia das respectivas bacias. Após a 
validação bem-sucedida do modelo e uma melhor compreensão das dinâmicas das bacias, os modelos foram usados como 
uma plataforma para diferentes análises da terra e das alterações climáticas. Tendo em conta o cenário do RCP 8.5, baseado 
em EC-EARTH e ECHAM, downscaled pelo REMO, a bacia de Luanginga mostrou uma forte diminuição na produção de 
escorrência superfi cial, extensão de inundação e recarga de águas subterrâneas. Para o Kruismannsrivier, uma sub-bacia 
do Verlorenvlei, a relação entre a agricultura de contorno e os impactos relacionados com os processos de escorrência su-
perfi cial/subterrânea (e parâmetros relacionados) foram revelados pela modelação. Estas descobertas podiam ser também 
projectadas para a bacia de Gaborone Dam, na qual a infl uência de pequenas barragens agrícolas espalhadas pela bacia podia 
ser demonstrada através da modelação.
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natural conditions of the hydrological 
systems in the three pilot catchments. 
The second objective focused on the 
representation of major anthropogenic 
factors apparently infl uencing the hydro-
logical conditions within two of the pilot 
catchments, namely the Gaborone Dam 
and Verlorenvlei catchments. By imple-
menting additional simulation routines, 
the models were adapted to more precise-
ly refl ect specifi c local conditions in both 
pilot catchments and to improve model 
performance (e.g., advanced routing 
techniques and modules simulating the 
infl uence of small farm dams, irrigation, 
and contour farming). The third objective 
was to assess the eff ects of climate change 
on the hydrological process dynamics in 

the other pilot catchment, the Luanginga 
catchment. In this catchment, the focus 
was on developing a model extension ca-
pable of simulating the annual fl ooding 
condition and therefore to provide a more 
realistic simulation of hydrological com-
ponents like runoff  generation, evapo-
transpiration, and soil moisture. Using 
this model, the climate change impact has 
been analysed up to the year 2100. Spe-
cial attention was paid to investigating 
how the newly developed fl ood extension 
responds to climate change and how this 
impacts fl ood dynamics and extent. How-
ever, the developed model also provides 
the basis for follow-up assessments with 
more comprehensive climate projection 
data sets. 

Study Areas

Verlorenvlei
The Verlorenvlei catchment (~1 820 km²; 
Fig. 1) drains into an estuarine lake, a 
RAMSAR-listed wetland on the west 
coast of South Africa within the Sandveld 
area; the intermittent connection between 
fresh and salt water is connected to a high 
biodiversity profi le. The Sandveld region 
has a Mediterranean climate, character-
ised by cool, rainy winters and hot, dry 
summers (Franke et al., 2014). Precipita-
tion is in the form of coastal fog and low 
and variable rainfall (Conrad &  Munch, 
2006). Furthermore, the area experiences 
wide ranging inter-annual climatic vari-
ability. The highest annual rainfall was 
recorded at in the upper catchment with 
589 mm in 2001, whereas the coastal 
area received the lowest rainfall, 115 mm 
in 2002. Potential evapotranspiration 
(PET) ranges from 1 200 mm per year 
to 1 600 mm per year, mostly exceeding 
rainfall rates; even the lowest PET is in 
excess of the highest rainfall (Conrad & 
Munch, 2006). 

The catchment is an important agricul-
tural area, providing 15% of the South Af-
rican potato crop (Potatoes South Africa, 
2015). Some tea and fruits are also grown, 
but play only a minor role for the majority 
of the farmers (Archer et al., 2009). The 
catchment is exposed to several challeng-
es, such as climate change and decreasing 
groundwater levels combined with an in-
creasing irrigation agriculture, represent-
ing a hydrologically vulnerable area with-
in the Sandveld (Conrad & Munch, 2006). 
The water users in Verlorenvlei area are 
highly dependent on groundwater, as sur-
face water resources are scarce. Most cit-
ies and irrigation systems in the region are 
supplied with groundwater. The only dams 
used for irrigation can be found in the more 
mountainous headwaters. A single sub-
catchment providing good quality water, 
the Krom-Antonies, is the system’s main 
provider of fresh water—almost all other 
sub-catchments are facing salinity diffi  cul-
ties (Conrad & Munch, 2006). Thus, the 
catchment is considered as a good exam-
ple of South Africa’s coastal areas, where 
water scarcity may be a limiting factor for 
economic development. The correct evalu-
ation of water resources, as well as their 

Figure 1: Location of the pilot catchments (red).
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quality and monitoring, are crucial for the 
sustainable use of water in this coastal 
area, where agricultural interests must be 
considered as well (Nel, 2004).

Two agricultural implementations 
that will be further discussed in this pa-
per, centre pivot irrigation and contour 
bank farming (Fig. 2), are apparent in the 
catchment. Contour farming is a common 
practice for water and soil conservation in 
the Western Cape Province (Wakindiki et 
al., 2007). Contour banks are constructed 
perpendicular to cultivated slopes, as 
well as at specifi c intervals downslope. 
Their main purpose is to reduce slope 
lengths and water fl ow velocity and to 
store and prolong surface runoff . The 
impact of contour bank farming on fl ood 
reduction and sediment dynamics has 
been studied in various semi-arid basins 
(Kingumbi et al., 2004; Nasri, 2007; Bac-
cari et al., 2008; Lesschen et al., 2009; 
Ouessar et al., 2009; Steudel et al., 2015). 
In centre pivots, sprinklers are attached 
below lateral pipes, which are used as 
a water supply. They represent a typical 

pattern of sprinkler irrigation (Omary et 
al., 1997; Foley, 2008). In the Sandveld 
area, the volume of water applied through 
irrigation exceeds the natural rainfall by 
a factor of between 3 in winter and 5 in 
summer months (Knight et al., 2007).

As no measured runoff  series was 
available for the whole Verlorenvlei 
catchment, results presented within this 
study are for the sub-catchment of Kruis-
river at station Tweekuilen (G3H001). 
This station provided a suffi  cient time 
series from 1970–2009 with only 3.2% 
missing data. Both mentioned agricul-
tural implementations are apparent in this 
sub-catchment.

Gaborone Dam
The Gaborone Dam catchment 
(4 500 km²), which is part of the Notwane 
River Basin (FAO, 2004), is located in the 
southeastern part of Botswana and shares 
a border with South Africa. The dam it-
self functions as the main water source for 
Gaborone City and the surrounding settle-
ments (Meigh, 1995; DWA, 2014a). The 

Notwane River has its source in the Kala-
hari sandveldt fl owing to the northeast 
until reaching the Limpopo River. About 
one-third of Bo tswana’s population lives 
in the Notwane Basin, which includes 
large developed cities such as Gaborone, 
Molepolole, Mochudi, Kanye, Lobatse, 
and Jwaneng. According to Köppen-Gei-
ger classifi cation, the catchment matches 
the requirements of BSh (hot, arid steppe) 
(Peel et al., 2007) with a mean annual 
temperature of 20.3°C and a precipita-
tion of 450–500 mm/a (Meigh, 1995; 
Peel et al., 2007). The climate is charac-
terised by a rainy season from November 
to March and a dry season from April 
to October. Due to low humidity condi-
tions, a mean PET of about 1 500 mm 
was estimated by Adams et al. (1999), 
and PET amounts can be up to four times 
higher than rainfall (FAO, 2004). All the 
rivers in the Gaborone Dam catchment 
are ephemeral. The Gaborone Dam was 
 established in 1963 and was  subsequently 
raised by 25  metres from 1984–1986. 
This  increased its potential capacity from 

Figure 2: Sub-catchments of the Verlorenvlei and location of centre pivots and contour banks
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23 to 141.1  million  cubic meters (Knight, 
1990; WUC, 2014). Since 2002, there has 
been a steady decrease in the volume of 
the Gaborone Dam (Fig. 3), reaching the 

lowest record in history of 1% at the end 
of 2015 (WUC, 2014), leading to failures 
of water supply (Plessis & Rowntree, 
2003). 

Luanginga
Wetlands like the Verlorenvlei are espe-
cially sensitive to hydrological regime 
changes (Mitsch & Gosselink, 2000). The 
third catchment studied here was the Lu-
aginga. It is a tributary of the Upper Zam-
bezi River and covers an area of ~33 000 
km², ranging from the Angolan highlands 
to the Barotse fl oodplain of the Zambezi 
River. The catchment is characterised by 
an annual fl ow regime and extensive wet-
land areas upstream of the gauge outlet 
at Kalabo, the central business district 
of the area. Due to the annual fl ood (Fig. 
4), which peaks in April, the fl oodplain 
consists of exceptionally fertile soils with 
high agricultural productivity and is also 
known for its rich cultural heritage. These 
factors combine to make the area within 
the watershed particularly sensitive to 
changes in hydrological conditions be-
cause humans, fl ora, and fauna are adapt-
ed to life in this special ecosystem. 

To model future changes caused by cli-
mate change until the end of this  century, 
two diff erent climate models and two sce-

Figure 3: Visualisation of the shrinking size of the Gaborone Dam, Gaborone, Botswana (2011–2015), perimeters derived by digitisation 
using Landsat 7 and 8 cloud-free scenes at the end of the rainy season (March–May); lines from outside to inside show 2011 to 2015.

Figure 4: Flood frequency in the Luanginga catchment derived from Landsat/DFI peak fl ood 
images based on a time series of 10 years.
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narios each were used to run the JAMS/
J2000 model in the Luanginga catch-
ment. As shown in Figure 5, they are 
all based on the regional climate model 
REMO, which has a high spatial resolu-
tion of 0.22 degree (25 km) and is forced 
either by EHAM or EC-Earth (0.44 de-
gree) using the RCP 4.5 and 8.5 scenar-
ios. The added value of this downscaling 
performed by the REMO model in com-
parison to the original ECHAM and EC-
Earth data is discussed in Fotso-Nguemo 
(2017a, 2017b) and mainly based on its 
higher spatial resolution, which plays 
a signifi cant role when considering the 
topography of the catchment, stretching 
from the Angolan Bié Plateau towards the 
Zambezi fl oodplains. Hänsler et al. (2011) 
showed that in southern Africa, the data 
(scaled down dynamically with REMO) 
corresponds to the spatial and temporal 
patterns of observation, and the seasonal 
precipitation characteristics are better re-

produced by this downscaling compared 
to the original ECHAM and EC-Earth 
data with the coarse 0.44 degree resolu-
tion. Further, a so-called “scaling” or 
“simple multiplicative” bias correction 
(Fowler & Kilsby, 2007; Gudmundsson 
et al., 2012) based on measured long-
term monthly precipitation means was 
applied to the REMO data as a spatially 
distributed correction factor in the JAMS/
J2000 model, where it is interpolated be-
tween the stations and multiplied with the 
interpolated precipitation for each spatial 
model entity (Meinhardt, 2017).

The adaptive hydrological 
modelling system JAMS/
J2000

In this section, the main concept of the 
hydrological model will be described. 
A detailed explanation of the developed 

model extensions will be given in the fol-
lowing section.

The process-oriented modelling sys-
tem JAMS/J2000 was used to address 
the hydrological dynamics within the 
pilot catchments. The model consists of 
encapsulated modules, each of which 
represents a diff erent hydrological pro-
cess and runs for diff erent temporal reso-
lutions (Krause, 2001, 2002; Kralisch 
& Krause, 2006). Following a spatially 
distributed approach, the model utilises 
the Hydrological Response Units con-
cept (HRU) (Flügel, 1995; Krause, 2001; 
Nepal, 2002; Watson et al., 2018) to rep-
resent spatial input data. The HRUs were 
delineated by overlaying information 
about soil, geology, and relief parameters 
according to Wolf et al. (2009). Accord-
ingly, J2000 is a spatially fully distributed 
hydrological model (Krause, 2002) using 
a routing topology to distribute lateral 
and surface water budgets between spa-
tial model units (HRUs) along the topo-
graphical gradient. Its process-based soil 
water balance module functions as the 
central ‘regulation and distribution sys-
tem’ (Krause et al., 2006; Knoche et al., 
2014) and mutually interacts with nearly 
all other J2000 process modules (Fig. 6; 
Knoche et al., 2014). Spatial model units 
contain two soil storages: the mid-size 
pore storage (MPS) represents the eff ec-
tive field capacity water budget that is 
reduced by the AET only. The large pore 
storage (LPS) cannot hold water against 
gravity and therefore ‘is considered as the 
source of all subsurface flow processes in 
the J2000 model’ (Krause et al., 2006; 
Knoche et al., 2014). Infiltration water 
is distributed to the MPS and the LPS 
based on a distribution coefficient until 
these storages are filled or the maximal 
infiltration rate is reached. Infiltration 
excess water is stored as depression stor-
age (DPS) at the surface. When DPS is 
exceeded, surface runoff  is generated 
and routed to the adjacent downslope 
spatial unit. The LPS outflow is distrib-
uted into lateral runoff  and percolation 
depending on the slope and a calibration 
parameter. There are two groundwater 
storages for each spatial model unit, one 
having a quick hydrological reaction and 
one having longer residence times. The 
percolation water is distributed between 

Figure 5: Structure of the applied climate scenarios.

Figure 6: Graphical representation of the J2000 model structure (Knoche et al., 2014). Abbreviations: 
DPS – depression storage; MPS – mid-size pore storage; LPS – large pore storage; GWS – ground-
water storage.
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the two groundwater storages depend-
ing on a calibration parameter and the 
slope (Krause et al., 2006; Knoche et 
al., 2014). The J2000 runoff  concentra-
tion and flood routing is calculated for 
the spatial model units and a network of 
river reaches. Lateral flows calculated for 
each grid cell are passed to downslope 
grid cells until a river reach is connected, 
where the lateral runoff  is transmitted to 
the streamflow budget. ‘Flood routing 
in the river network is calculated by a 
simplified kinematic wave approach, us-
ing Manning’s formula to calculate flow 
velocity’ (Krause et al., 2006; Knoche 
et al., 2014). For the Verlorenvlei and 
Gaborone Dam catchments, the routing 
mechanism between spatial entities was 
switched from single- to multi-fl ow rou-
tines in order to more precisely capture 
the spatial variability within the fl at ter-
rain (Pfennig et al., 2009).

Further individual adaptations imple-
mented to represent the specifi c condi-
tions in the study areas (contour farming, 
irrigation agriculture, farm dams, and 
fl ood plains) are described in the follow-
ing subsections.

In order to provide an easy and user-
friendly way to set up such a model, soft-
ware toolsets like the RBIS (River Basin 
Information System; Zander & Kralisch, 
2016) and the GRASS-HRU (Schwartze, 
2008; Schwartze et al., 2012), service- 
and web-based tools for geo(-data) pro-
cessing, were used to provide a data ba-
sis and generate input data for the JAMS/
J2000 modelling system.

Contour farming
To incorporate the eff ect of the locally 
applied land use management prac-
tice of contour bank farming, a contour 
bank module according to Steudel et al. 
(2015) was integrated. This involves 
the addition of contour bank storages to 
each HRU. The volume of this storage 
depends on the contour length per HRU 
and a predefi ned catchment-specifi c 
mean height of the contour bank wall. 
The total length per HRU is calculated 
during the pre-processing HRU delinea-
tion (Pfennig et al., 2009) and depends on 
site-specifi c conditions, such as slope and 
land use. The main infl ows into the con-
tour bank storage are surface runoff  and 

sub-surface runoff  (interfl ow) (Steudel et 
al., 2015). The proportion of surface run-
off  which exceeds the maximum storage 
capacity of the contour bank is routed as 
surface runoff  into the next neighbouring 
HRU. The proportion of interfl ow fl ow-
ing into the storage is a function of the 
actual interfl ow and a gradient (diff er-
ence between water level of the saturated 
soil zone with the ditch and the actual 
total water level of this zone). Water in 
the ditches infi ltrates and/or percolates 
into the underlying soil or groundwater 
zone. For channel drainage, each HRU 
with assigned contour banks is routed 
to the stream network according to the 
calculated fl ow accumulation. To build 
contour banks, guidelines for the Western 
Cape region (Mathee, 1984) recommend 
to farmers that the distance between con-
tour banks should be planned according 
to: 

V = 0.25  S + 0.5
with 
V = Vertical distance of contour banks [m]
S = Slope [%]

A detailed description of the contour 
bank extension can be found in Steudel 
et al. (2015). Within this study, adaptions 
were made in the delineation of the con-
tour banks, which were then used by the 
model. Contrary to the parameters used 
by Steudel et al. (2015), the values were 
adapted according to the equation above. 
In order to fi t the special circumstances 
in the Verlorenvlei area, the total contour 
bank length per HRU from diff erent de-
lineations using various parameter com-
binations was compared to the real length 
from digitised contour banks utilising 
Google Earth. The parameters described 
in the following equation show the best 
fi t between modelled and real contour 
lengths:

V = 0.6  S + 0.5

Irrigation 
In order to represent water abstractions 
for irrigation in the model, a simulation 
approach that is applicable in situations 
where only limited information is avail-
able about the exact location and irriga-
tion water amounts was needed. As a test 
case, the Verlorenvlei catchment with 
its large proportion of irrigated agricul-
tural land use was chosen. In the model, 

the principle method of representing ir-
rigation followed a three-step approach 
(Branger et al., 2016):
1. Calculate irrigation demand for all 

HRUs that feature irrigated agricul-
tural land use at the current time t. This 
is done in two steps:

a. Calculate the evapotranspiration defi -
cit (etDefs) between actual (actETs) 
and potential (potETs) evapotran-
spiration at each HRU s as  
        etDefs = actETs / potETs 

and compare it to a defi ned irrigation 
threshold (iT), which controls wheth-
er irrigation is used at all. For this pur-
pose, which proportion of the actual 
evaporation is actually used (actET/
potET) is calculated. If this propor-
tion is below the threshold, irrigation 
is used. For example, a value of 0.9 
for the threshold means that irrigation 
will be active if less than 90% of the 
potential evaporation is currently oc-
curring. If etDefs is smaller than iT, 
continue with step b.

b. Calculate the actual demand (iDe-
mands) based on the actual (actSWs) 
and maximum (maxSWs) soil water 
storage at HRU s according to 
  iDemands = cf (maxSWs – actSWs) 
with cf as a correction factor, which 
is a simple multiplier and calibration 
parameter that can be used to adapt 
the identifi ed irrigation needs. The 
basis for this is initially the diff er-
ence between current and maximum 
soil water storage. This diff erence is 
then multiplied by cf to determine the 
demand.

2. For each sub-basin B, sum up the irriga-
tion demand (iDemandB) for all HRUs
       iDemandB = S∈B iDemandS     

Then calculate the amount of irrigation 
water (iVolumeB) based on the available 
water in the stream segment (streamVol-
umeB) during the current model time step 
          iVolumeB = min (iDemandB, 
                 streamVolumeB) 
and distribute the irrigation water to 
all demanding HRUs s proportional to 
their demand (iDemands). 

3. At the next time step t+1, apply the ir-
rigation water iDemands at each HRU s 
according to a defi ned application pro-
cedure.
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In order to allow for diff erent types of ir-
rigation in the test region, three optional 
application procedures were implement-
ed in the model:
1. Sprinkler irrigation: precipitation is 

increased by the amount of irrigation 
water 

2. Flood irrigation: net precipitation is 
increased by irrigation water amount 
(i.e., interception is not considered)

3. Dripper irrigation: the middle pore 
storage is increased by irrigation water 
amount (i.e., interception and infi ltra-
tion are not considered)

As a general means to control where ir-
rigation is possible, HRUs with irrigated 
land use were individually fl agged. This 
included all areas which were designated 
as cultivated areas in the HRU parameter 
data set. For our study basin, sprinkler ir-
rigation was used. 

Farm dams
Due to the small number of climate sta-
tions, only sketchy data were available 
as input for hydrological modelling. Ad-
ditionally, these time series are aff ected 
by numerous large gaps. As there was no 
measured runoff  data available for calibra-
tion purposes, calculated monthly infl ow 
values to the Gaborone Dam as stated by 
DWA (2006) were used in order to simu-
late seasonality and magnitudes of runoff . 
In order to capture the impact of small farm 
dams on runoff  and storage patterns within 
the model, a concise analysis of existing 
dams in terms of location and capacity was 
carried out. This resulted in the assessment 
of 20 dams in total. Here, only those dams 
that are assumed to have the potential to 
create a noticeable impact on the overall 
runoff  regime (i.e., dams with an area of 
more than one hectare) were chosen by 
digitising their position in Google Earth. 
For these 20 dams, information about ca-
pacity and overall volume was made avail-
able through DWA (1992, 2014). Further-
more, around 217 small dams with minor 
relevance were each considered through-
out the catchment (DWA, 2014b). For each 
of these dams, the related river segment 
was identifi ed and labelled to derive zonal 
statistics for capturing their location within 
the catchment. 

Making use of this information, a new 
module for farm dam simulation was then 

implemented into the JAMS/J2000 hy-
drological model. Accounting for the fact 
that precise information is often missing, 
especially with regard to smaller farm 
dams, this approach allows simulation of 
the function of farm dams in a conceptual 
way. Here, it can be used to either repre-
sent single, large dams or a larger number 
of small dams belonging to a certain sub-
watershed as a lumped unit. The impact 
of the dam is simulated at the associated 
river reach in the following way:
1. If dam storage volume is available: ex-

tract a defi ned proportion of the over-
all reach runoff  in the current time step 
and store the water in the dam, taking 
the maximum dam storage volume into 
account

2. At the beginning of the rainy season, 
empty a certain amount of the dam 
storage volume, thereby representing 
the water use over the year.

Using this simplifi ed representation of 
dam operation, a dam can extract water 
amounting to its full volume only once 
a year. The water is then completely re-
moved from the hydrological system, not 
taking into account its possible use for 
irrigation agriculture which, in theory, 
could mean that the stored water enters 
the hydrological cycle again. However, 
both assumptions are in line with in-
vestigations of dam operation and use 
of stored water. In order to account for 
the various unknown und uncertain pa-
rameters (e.g., individual dam volumes, 
operation details, water use), various pa-
rameters of the dam simulation module 
(e.g., amount of water used, dam volume) 
can be adapted for calibration based on 
observations. Using this new simula-
tion module, the number of dams, their 
capacity, and thus their impact on runoff  

generation can be easily increased or de-
creased in order to adapt the model to any 
conceivable scenario.

Flood Plains
A fl oodplain simulation extension 
(J2000-Flood), characterised as a con-
ceptual and easily transferable approach 
that is less data hungry and easy param-
eterisable, is used to simulate wetland in-
undation within the model. Due to the da-
ta-scarce situation in remote catchments, 
the extension’s parameters (HRU eleva-
tion and river width) were obtained from 
remote sensing data only. On an iterative 
basis, the water height in each river seg-
ment is compared to the elevation of its 
neighboring HRUs. When the river seg-
ment’s water level is higher (i.e., fl ood-
ing occurs), the water is transferred to the 
HRUs and their topologically connected 
neighbours until the simulated fl ood level 
is too low to spread any further (Fig. 7). 

Within the model, the distributed water 
volume is stored in the excess depression 
storage, interacting with soil and atmos-
phere, which allows evapotranspiration 
and infi ltration to be modelled. Hence, the 
model is able to represent the annual fl ow 
and fl ood regime of the system and thus to 
address the eff ect of climate change and 
upstream land use changes on the fl ow 
regimes in the downstream watershed. 
In order to provide a spatial basis for 
model validation and calibration (in ad-
dition to gauge data), the inundated area 
was determined using the Desert Flood 
Index (DFI; Baig et al., 2013), which 
was generated from a time series of 14 
Landsat image mosaics and is  defi ned as:

Figure 7: Schematic concept of the extension J2000-Flood in top (left) and profi le view (right).
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observed for low discharge periods. Re-
garding the quality measures (Tab. 1), it 
is obvious that the new implementations 
increase the model performance for high 
(Nash-Sutcliff e efficiency: e2; Krause et 
al., 2005) and low fl ow periods (modifi ed 
Nash-Sutcliff e efficiency: e1; Krause et 
al., 2005) because runoff  and, therefore, 
its overestimation is reduced.

The infl uence of the two components 
becomes much clearer when examining 
Figure 9. Overestimations of runoff  in 
low fl ow months could be minimised by 
using the new implementations as evi-
denced by the peak discharges in August 
and September, which were less over-
estimated when the model used the im-
plementations. Minimal diff erences be-
tween the original model and the model 
with active irrigation from June to July 
occur because irrigation only takes place 
if there is demand for irrigation. Reduc-
tion of runoff  is due to the decrease in 
overland fl ow, with a higher infl uence 
when contour farming is active.

Gaborone Dam
When the model was adapted to the local 
study area conditions and operating with-
out the implementations of the new farm 
dam module, reliable results regarding 
the representation of all hydrologically 

et al. (2018). Results of modelled runoff  
for the year 1992 (Fig. 8) is shown sepa-
rately for the basic J2000 implementa-
tion (‘natural hydrology’), implemented 
contour farming, and irrigation. The in-
fl uence of irrigation and contour farming 
practices could be identifi ed, particularly 
during the period from June to August, 
which experiences high rainfall and dis-
charge events. During the peak period in 
July 1992, when the new implementa-
tions were active, the model showed less 
overestimation of runoff . This was also 

where NDVI is the Normalized Diff er-
ence Vegetation Index and ρNIR, ρRed, 
ρGreen, and ρSWIR are the values of re-
fl ectance for the respective bands. As un-
derfl ooded vegetation occurs frequently 
in the inundated areas, the DFI was cho-
sen because it is better in the distinction 
of water and vegetation as well as bare 
soils compared to other indices (Baig et 
al., 2013; Wang et al., 2013). Moreover, 
it was successfully applied in the neigh-
bouring Barotse fl oodplain (Zimba et al., 
2018).

Results 

Verlorenvlei
A detailed description of the J2000 model 
applied to the Verlorenvlei catchment as 
well as its calibration and validation is 
shown in Watson et al. (2018) and Miller 

Figure 8: Rainfall, observed (grey) and simulated runoff  (no adaptions made in orange, with contour 
farming active in green, with irrigation active in blue) for example period 01/01/1992 – 31/12/1992.

Table 1: Quality meas-
ures (Nash-Sutcliff e 
efficiency: e2, modifi ed 
Nash-Sutcliff e efficiency: 
e1; Krause et al, 2005) 
and runoff  produced by 
every implementation 
for the example period 
01/01/1992 – 31/12/1992

Figure 9: Monthly 
observed (grey) and 
simulated runoff  (no 
adaptions made in 
orange, with contour 
farming active in 
green; irrigation active 
in blue) for example 
period 01/01/1992 – 
31/12/1992.
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relevant processes such as evapotranspi-
ration were obtained. Evapotranspiration 
is classifi ed as a process having a high 
infl uence on runoff  processes (Hughes, 
2007). For instance, Figure 10 shows the 
modelled potential evapotranspiration 
(potET) values as calculated by J2000 
using the Penman-Monteith method, 
compared to measured values from an A-
pan at the climate station Molatedi Dam 
(DWA, 2014a) for the years 1991–2001. 
Modelled potET values showed a mean 
annual evapotranspiration of 1 800 mm, 
compared to 2 200 mm at Molatedi Dam 
Station. The lower potET values can be 

explained by vegetation dynamics repre-
sented in the model. In the fi rst half of the 
rainy season, the vegetation starts to grow 
and the leaf area is not fully established, 
resulting in a reduction of the calculated 
potET. This dynamic cannot be represent-
ed by the measurements with an A-pan.

Simulated runoff  (1985–2001; Fig. 11) 
fails in part to demonstrate reliable per-
formance, but regarding the months June 
to December, the performance is accept-
able compared to calculated values as 
stated by DWA (2006). These values are 
long-term monthly means, about which 
we have no detailed or quality informa-

tion. Considering this data availability, 
reliability, and model performance, it was 
neither useful nor even possible to cal-
culate any quality measures as was done 
for the other catchments in this study. 
Peak runoff  values (i.e., during the rainy 
season from January to April) are over-
estimated by the model, with the highest 
overestimation observed for the month of 
March. This is due to the strong response 
of J2000 to high and suffi  cient rainfalls 
which occurred in the years 1988, 1991, 
and 2000. For these years, the model 
showed a strong overestimation, initiated 
mainly through long and strong retention 
periods following the peak runoff , trig-
gered by intensive rainfalls. In addition, 
potential evapotranspiration showed 
comparatively low values during these 
years. 

The impact of more than 200 farm 
dams for two representative years for 
notable dry (a) and wet (b) conditions 
within the catchment (Fig. 12) showed 
that using the farm dam extension, simu-
lated runoff  decreased in a distinctive 
way. When the runoff  was compared 
with the initial model, the results showed 
that runoff  had decreased by 19.4% and 
6.8% for the dry and wet conditions, re-
spectively. Regarding the modelling for 
the whole period, values for wet years 
achieved 14.7% and 17.1% for dry years. 
Taking a closer look to the water balance 
for the sub-catchment where the farm 
dam module was used (1985–2001), the 
runoff  from this area decreases by 29% if 
farm dams are taken into account. This 
corresponds to 10% of the precipitation, 
whereas without farm dams, 14% of the 
precipitation were modelled as runoff .

Luanginga
After calibration using gauge data for 
the period of 1959–1968, relatively good 
results were achieved (Nash-Sutcliff e 

Figure 10: Comparison between measured and modelled daily potential evapotranspiration values 
from 1991-1998; measured values (blue) refer to Moladeti dam climate station, red line shows mod-
elled evapotranspiration as calculated by J2000 using Penman-Monteith.

Figure 11:  Comparison of mean monthly runoff ; red line shows modelled values by J2000, blue line 
shows calculated values as stated by DWA (2006).

Figure 12. Simulated runoff  
comparison for the Gaborone 
Dam catchment between rep-
resentative years of (a) dry 
(1990) and (b) wet (1991) 
conditions, simulated runoff  
without the dam extension 
(grey), and simulated runoff  
with the dam extension (light 
grey).
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a spatially distributed output of all hy-
drological components like percolation 
as represented in Figure 16, showing 
areas of higher decreases particularly 

in both runoff  generation (39%) and and 
percolation (32%), providing an indica-
tor for groundwater recharge being very 
likely (Fig. 15). The model also allows 

efficiency: e2 0.81; relative percent-
age volume error: PBIAS -4.29). Model 
results for the validation period, from 
1981–2003, were also acceptable, with 
an e2 of 0.75 and a very good PBIAS of 
-1.29. Similar values were obtained using 
the modifi ed e2, which is more sensitive 
to low fl ows: e1 0.69 for the calibration 
period, and e1 0.6 for the validation pe-
riod. However, Figure 13 shows some 
shortcomings regarding the simulation of 
peak discharge, which is either under- or 
oversimulated for many years. Regarding 
the water balance of the validation phase 
(1981–2003), 93% of the precipitation 
evapotranspirates and only about 5.4% 
drains to the catchment outlet. In this con-
text, it is interesting to note that 20% of 
the precipitation percolates fi rst, but due to 
capillary rise and the implemented inun-
dation, it is able to evapotranspirate later.

The validation of the spatial fl ood extent 
in total also resulted in a good correlation 
(R² = 0.71) between the inundated area de-
rived from the DFI and the modelled fl ood 
area. The accuracy of the spatial distribu-
tion of the inundated area was obtained by 
calculating the area under the curve (Fig. 
14). For example, 10% of the highest DFI 
values correspond to 80% of the modelled 
inundation in 1992. In total, the results 
range from an outlying value of 0.59 up to 
a promising 0.88. In addition, the more de-
tailed spatial pattern also appears accept-
able, resulting in an accurate simulation of 
the inundation in the main fl oodplain in 
most years. Considering the elevation un-
certainty inherent to the digital elevation 
model, as well as data sparsity in terms of 
both time series length and station pres-
ence and location, the results are deemed 
satisfactory. More details about the used 
data sets, model calibration, and valida-
tion, as well as further results, are shown 
in Meinhardt (2017).

Overall, the model is able to accurately 
represent the annual fl ood regime of the 
system, and thus to address the potential 
eff ect of various climate change scenar-
ios on the hydrological processes in the 
watershed. Under the RCP 8.5 scenario, 
using input data from the EC-Earth and 
ECHAM models and following a pro-
cess of downscaling using the REMO 
model and bias correction, the model 
results revealed a substantial decrease 

Figure 13: Observed vs. simulated runoff  at the gauge in Kalabo (validation period 1981-2003) with 
DFI years marked).

Figure 14: Area under the curve of the simulated fl ood extent (y-axis cumulated) compared to the 
derived DFI area (x-axis ranked) for the Luanginga catchment.

Figure 15: Percent change of precipitation, runoff , percolation, inundation extent, and tem-
perature (change in °K) from 1986-2005 (historical) to 2081-2100 (RCP) for the Luanginga 
catchment.
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2002; Wheater, 2008). Accordingly, it 
can be assumed that surface runoff  from 
Horton’s type, particularly due to con-
vective rainfall events during the rainy 
season, often does not reach the receiv-
ing water or the outlet. The precipitation 
events are localised and, thus, cause a 
reduction of water reaching the outlet as 
a result of infi ltration excess at inclined 
surfaces (Hughes, 1995). Another limit-
ing factor can be seen in so-called trans-
mission losses (Graf, 1988), wherein 
large quantities of water are lost through 
infi ltration losses in the porous and dry 
riverbed on their way to the catchment 
outlet. Following Hughes (1995), of-
ten only runoff  which was generated by 
large-scale rainfall events or by directly 
successive rainfall events reaches the 
outlet. Another limiting factor regarding 
peak runoff s may result from the rela-
tively fl at terrain characteristics within 
the catchments. Flat terrain often leads 
to wider areas being available for runoff  
processes, leading to a temporal retention 
of runoff , in turn leading to pronounced 
retention periods (Pan et al., 2012), also 
shown within this study.

in the fl oodplain. The changes present-
ed by these models are mainly attribut-
able to a substantial temperature rise of 
about 5°C, leading to a strong increase 
in evapotranspiration occurring until the 
end of the century. The decreases in water 
quantity as predicted by the models used 
would result in a reduction of fl ood extent 
(35%) and duration and, thus, alteration 
and damage to the highly productive 
and valuable wetland ecosystem. This, 
in turn, would signify increased risk to 
the people living in the region, many of 
whom depend upon the wetlands for their 
livelihoods.

Discussion

The modelling results show a number 
of shortcomings, which are addressed 
in the following discussion. First of all, 
it must be appreciated that the locations 
of the climate stations used for the Lu-
anginga and Verlorenvlei model are not 
ideal. Available stations which matched 
the calibration timeframe of the meas-
ured runoff  and quality requirements are 
located far outside the catchment; for in-
stance, the modelling of the Luanginga 
catchment relies mainly on the climate 
station in Mongu, which is situated about 
60 km outside of the catchment. How-
ever, the distance to the headwaters is 
more than 400 km (Fig. 1). According 
to Wheather (2008), model performance 
decreases with increasing distance from 
climate stations to the designated catch-
ment, which could explain why the Lu-
anginga model failed to simulate peak 
discharge in many years. Additionally, 
nearly all climate series contained large 
gaps, so only a few stations could be 
used for modelling. Filling such gaps 
using other stations was not possible, as 
data gaps often occurred within the same 
time. Another limiting factor for model 
performance is the fairly uniform topog-
raphy towards the outlet, which leads 
to very slow velocities, changes in fl ow 
directions, and bi-directional channels 
(VerWest, 2002; Druid, 2017). Further-
more, the water is not necessarily fl ow-
ing in the direction of the steepest surface 
slope represented by the digital elevation 
model used, although this is assumed by 

the model and the HRU concept, as it 
was originally developed for areas with 
steeper gradients.

Focusing on the overestimation of 
runoff  in the Gaborone Dam and Verlor-
envlei catchments, it must be mentioned 
that surface runoff  in semi-arid regions 
is primarily of Horton’s type (Smith & 
Goodrich, 2005). This arises as a result 
of convective precipitation events whose 
intensities exceed the infi ltration capacity 
of the soils (Pilgrim et al., 1988). Addi-
tionally, it is well known that the infi ltra-
tion conditions of soil are highly variable 
in space and time due to processes like 
crusting. These are hard to represent in 
a hydrological model, especially on the 
meso and macro scales (Adornis et al., 
2014). Excess water that cannot infi ltrate 
into the ground accumulates on the sur-
face and may subsequently lead to fast 
runoff  (Gupta, 2010). The occurrence of 
this infi ltration-excess overland fl ow is 
caused by the patchy vegetation cover 
on slope areas and shallow, poorly devel-
oped soils with low infi ltration capacity, 
in conjunction with rigidities of the up-
per soil horizon (Hughes, 1995; Beven, 

Figure 16: Average percolation (1986-2005 compared to 2081-2100) for the Luanginga 
catchment.
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ment model GR4J tested the reliability 
of low-fl ow simulations in a semi-arid 
Andean catchment facing climate vari-
ability and water-use changes (Hublart et 
al., 2015). This study resulted in confi rm-
ing the model’s applicability to assess the 
capacity of the system to meet increasing 
crop water needs. However, few studies 
used irrigation mechanisms as input to 
distributed hydrological models. As one 
example, Ahmed et al. (2011) applied the 
SWAT model (Arnold et al., 1998) in a 
Mediterranean catchment to a sprinkler 
irrigated watershed. They indicated the 
usability of distributed models for a sim-
ulation of irrigation demands.

Focusing on the Luanginga catchment, 
other studies show a very similar be-
haviour for the Upper Zambezi regarding 
the hydrological process dynamics (Bas-
tiaansen, 1995; Gerrits, 2005; Winsem-
ius et al., 2006; McCartney et al., 2013). 
Compared to other studies, none of these 
presents a model which maps the hydro-
logical processes spatially distributed in 
a high degree of detail as well as for larg-
er catchments of more than 10 000 km². 
These studies typically rely on in-situ 
measurements (Hunter et al., 2007; Pra-
manik et al., 2010) or model only smaller 
(27 km²; Adams et al., 2016) isolated 
wetlands or fl ooded areas (Thompson et 
al., 2004; Zhang & Mitsch, 2005; Fernán-
dez et al., 2016). This clearly shows the 
need and the importance of the devel-
oped fl ood extension, which creates a 
hydrological model system meeting the 
requirements mentioned above. Further-
more, this extension is parameterisable 
with remote sensing data, such as the 
SRTM-DGM, in order to simulate the 
fl ooded area and its depth and duration 
even in data-poor areas. 

At the same time, input data like pre-
cipitation from the distant station in 
Mongu and especially the height accu-
racy from the elevation model account 
for major uncertainties of the presented 
modelling results. The SRTM-DGM 
employed is supposed to have an aver-
age height accuracy of approximately 
3.1–4.4 m (RMSE 12.4–16.5 m) for areas 
with a slope less than 10° and grass and 
scrubland, which is typical for the catch-
ment (Tighe & Chamberlain, 2009). To 
keep the impact of this height accuracy in 

The modelling results of the present 
study support the assumption of Habets 
et al. (2014) and Meigh (1995) of a no-
table infl uence of farm dams in dry years. 
Overestimation of runoff  during the wet 
season was reduced after the implemen-
tation of the farm dam module, but was 
still present. Reasons for this observation 
can be seen in the lack of representation 
of runoff  in very shallow areas with low 
slope and a partial under-representation 
of evapotranspiration. Furthermore, only 
calculated monthly values were available 
for direct model calibration, as well as 
short runoff  time series of adjacent areas. 
Errors may arise here from comparing 
values from the calculation and from adja-
cent basins, as these sides partly exhibited 
steeper slopes and showed some notable 
diff erences in catchment size compared to 
the Gaborone Dam catchment.

Comparing the contour bank model 
extension of Verlorenvlei catchment with 
other studies, it is obvious that very few 
examined the implementation of contour 
banks in distributed hydrological mod-
els. For instance, Quessar et al. (2009) 
investigated the impact of earthen dikes 
on hydrological conditions in a Tunisian 
catchment by utilising the SWAT hydro-
logical model (Arnold et al., 1998). The 
LAPSUS model was successfully applied 
by Lesschen et al. (2009) in the semi-arid 
Carcavo catchment in southeast Spain, 
showing that the spatial distribution of 
agricultural terraces determined hydro-
logical connectivity at the catchment 
scale. Steudel et al. (2015) investigated 
the use of the hydrological model J2000 
and the infl uence of contour banks on the 
hydrology and sediment transport in the 
Sandspruit catchment in South Africa. 
All three studies clearly indicated that 
contour farming has an infl uence on hy-
drological process dynamics and should 
be integrated into distributed hydrologi-
cal models whenever such practices are 
apparent in a semi-arid catchment.

Diff erent model types are available 
to integrate irrigation into hydrologi-
cal modelling. Hagi-Bishow and Bon-
nell (2000) assessed the usability of 
the numerical LEACHM-C Model for 
semi-arid saline irrigation, resulting in 
the usability in poor-quality water catch-
ments. The lumped, conceptual catch-

Looking at the numerous dams of the 
Gaborone catchment, it is of great im-
portance to model the evapotranspira-
tion correctly. According to Adams et al. 
(1999), the modelled evapotranspiration 
values are within range, considering the 
interpolation of climate input values over 
the catchment area compared to measured 
values at one specifi c climate station.

Some studies indicate that the decline 
of the volume of water is supported by the 
construction of several small farm dams 
upstream of the Gaborone Dam; these are 
used for watering livestock and for irriga-
tion (Meigh, 1995; DWA, 2014b). Com-
bined with the spread of arable land and 
meadows, the infl uence of the farm dams 
on the water balance increases (DWA, 
1992; Meigh, 1995; Plessis & Rowntree, 
2003). A number of case studies have 
shown that smaller farm dams can af-
fect the fl ow pattern of a basin. Habets 
et al. (2014) revealed that accumulated 
water for irrigation is not available for 
runoff  processes and reported a decrease 
in the outfl ow in presence of farm dams. 
Studies in South Africa confi rmed the 
infl uence of farm dams on fl ow patterns 
(Hughes & Mantel, 2010; Mantel et al., 
2010), particularly aff ecting the base 
fl ow. Meigh (1995) discussed the impact 
of smaller farm dams on the fl ow patterns 
and its relevance for infl ow into the Gab-
orone Dam. He came to the conclusion 
that the construction of additional farm 
dams may cause a severe threat to the 
functioning of the dam as a viable water 
supply for Gaborone. The study showed 
that the farm dams had a complete capac-
ity of 10% of mean annual runoff . Meigh 
(1995) stated that the total runoff  volume 
of a catchment is also reduced by ap-
proximately the same amount. Additional 
factors such as location of the dams were 
identifi ed as controls, as an increased im-
pact on downstream areas was shown by 
increased infl ow volumes to these dams 
(Meigh, 1995). Meigh also confi rmed a 
greater impact of dams in drought years. 
Furthermore, the study indicated that 
a small number of large farm dams has 
less impact on the runoff  than a higher 
number of small dams. This is due to the 
smaller surface area of larger dams in 
relation to their capacity, resulting in re-
duced evapotranspiration values.
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the inundation modelling small, a spatial 
mean of the elevation was calculated for 
each HRU, which reduces the inaccuracy 
(Jung & Jasinski, 2015).

For the climate change analysis, a slight 
decrease in the precipitation is expected, 
but a more important eff ect from the rising 
temperatures will be increased evaporation 
and thus a reduction of the average annual 
runoff  by 42 (EC-Earth RCP 8.5) and 36% 
(ECHAM RCP 8.5). Other studies also 
project declining fl ows in the region (Wol-
ski et al., 2012; Kling et al., 2014; Zhao & 
Dai, 2015), which have already been con-
fi rmed by past hydrological measurements 
(Gaughan & Waylen, 2012). For example, 
values between 17–26% are given for the 
reduction of the mean discharge in the 
neighbouring Okavango (gauge Mukwe) 
up to the end of the century (Andersson et 
al., 2006; Todd et al., 2008). Kling et al. 
(2014) used EU WATCH data to model a 
decrease of up to 18% for the same period 
across the entire Zambezi. These values 
are lower in comparison with the study 
area of this work. The reason for this is 
probably the comparatively higher evapo-
ration in the Luanginga. This is due to the 
larger proportion of the fl ood area to the 
respective catchment area size. In addi-
tion to the diff erent catchment areas, the 
studies also used diff erent climate models, 
scenarios, and hydrological models, which 
makes it diffi  cult to compare them with 
each other. Together, however, they all re-
sult in strongly decreasing discharges until 
the end of the century. In addition, climate 
projection data include some uncertainties, 
especially under the unstable conditions of 
the tropical and subtropical atmosphere.

Moreover, the pilot catchment and its 
adapted models show the benefi ts of in-
tegrated distributed models because they 
provide a way to describe spatio-tempo-
rally variable hydrological processes in-
cluding the infl uences of human activities 
as well as eff ects of climate change. For a 
realistic representation of prevailing hu-
man activities combined with natural hy-
drologic dynamics, the model employed 
should be process-based, i.e. able to re-
produce lateral and vertical processes 
(Hughes, 2004; Arnold & Fohrer, 2005;). 
The use of a spatially distributed model 
in this study showed advantages in accu-
rately representing the localisation of the 

farm dams and therefore their diff erent 
infl uences on the runoff  processes. The 
same is true for the reliable representa-
tion of climatic conditions, evapotranspi-
ration, and groundwater recharge, as well 
lateral soil water processes.

Overall, transferability is ensured due to 
the fact that the implementations of inun-
dation, farm dams, and irrigation simula-
tion are developed in a conceptual way so 
they can be applied in other catchments, 
especially if data availability represents 
a constraint for the correct simulation of 
rainfall runoff  mechanisms when human 
infl uences are present. The possibility of 
transfer is also given for the contour banks 
module. However, while delineating the 
location and number of contour banks, 
specifi c conditions in the respective catch-
ments must be carefully considered (for 
example, land use forms, slope). 

Conclusions

For all three pilot catchments in southern 
Africa, it has been shown that the select-
ed approach of an adapted hydrological 
model is suitable to address the formu-
lated problems. Additionally, the concep-
tual adaption approach used shows two 
advantages. First, the models can be ap-
plied in data-scarce regions; second, this 
allows transferability under similar con-
ditions without work-intensive adaptions 
being necessary. For example, the fl ood 
implementation is currently applied in 
the upper Okavango River Basin. Moreo-
ver, it became obvious that it is necessary 
to adapt hydrological models to specifi c 
hydrological conditions on the catch-
ment scale to model the hydrological 
processes and therefore the water balance 
correctly. Hence, the adapted models pre-
sented here make a valuable contribution 
to properly quantifying the impacts of 
changing climate and land management 
on hydrological process dynamics.
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