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Abstract: Dry tropical forests are facing large-scale conversion and degradation processes and are the most endangered 
forest type worldwide.  We analyse these processes in the dry tropical forest type of miombo woodlands in a rural area of 
south-central Angola. We show that large-scale conversion to agricultural areas takes place in this area, as does modifi cation 
of woodland areas, i.e. by degradation due to the extraction of natural resources. By using remote sensing data, spatial driv-
ers of this conversion and its eff ects may be assessed for the time period 1989–2013. We identify settlement dynamics and 
the location and quality of streets as major underlying determining factors for conversion processes. Since the 1980s, the 
rate of agricultural expansion has strongly depended on socioeconomic background factors and is currently on a level of ca. 
9 000 ha/year in the study area. Fallows were found to only slowly regenerate, and there is a change in cultivation pattern to 
more permanent forms of cultivation. Large portions of the study area are undergoing degradation processes, leading to an 
additional loss of biomass. The results indicate that there is high pressure on the natural ecosystems of the study area, which 
will probably aggravate in the future with a high likelihood of emerging land use confl icts.

Resumo: As fl orestas tropicais secas enfrentam processos de conversão e degradação de larga escala, sendo o tipo de 
fl oresta mais ameaçado mundialmente. Analisámos estes processos em bosques de Miombo (tipo de fl oresta tropical seca) 
numa área rural do centro Sul de Angola. Mostramos que ocorrem processos de conversão de grande escala para áreas agrí-
colas, bem como modifi cação de áreas de bosque, i.e., degradação devido à extracção de recursos naturais. Com recurso 
ao uso de dados de detecção remota, os factores espaciais desta conversão e os seus impactos puderam ser avaliados para 
o período de 1989 a 2013. Identifi cámos que as dinâmicas das povoações e a localização e qualidade das ruas são factores 
fundamentais, determinantes e subjacentes para os processos de conversão. Desde a década de 1980 que a taxa de expansão 
agrícola depende fortemente do contexto socioeconómico, estando actualmente a um nível de cerca de 9000ha/ano na área 
de estudo. Foi observado que os terrenos em pousio apenas regeneram lentamente, e há uma mudança no padrão de cultivo 
para formas de agricultura mais permanentes. Grandes zonas da área de estudo passam por processos de degradação, levando 
a uma perda adicional de biomassa. Os resultados indicam que existe uma alta pressão nos ecossistemas naturais da área de 
estudo, a qual irá provavelmente agravar no futuro com uma grande probabilidade de confl ictos emergentes relacionados 
com o uso das terras.
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Introduction

The conversion of forest to cultivation 
areas can be considered one of the main 
land use change processes of our time, and 
dry tropical forests, considered the most 

endangered forest type worldwide, are 
facing particularly massive conversion 
and degradation processes (Janzen, 1988; 
MEA, 2005). In Sub-Saharan Africa, the 
rapid rate of land conversion to agricul-
ture can be attributed to a lack of mod-

ern farming techniques, e.g. fertilisation 
(MEA, 2005). This is also the predomi-
nant process witnessed in the miombo 
woodlands that stretch from the western 
coast of Angola to near the eastern coast of 
Mozambique and extend north-eastwards 
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into Tanzania (Chidumayo & Gumbo, 
2010). The largest proportion of miombo 
woodlands are located in Angola, and are 
of no interest to industrial logging. How-
ever, transformation and conversion pro-
cesses due to smallholder agriculture, use 
of plants, charcoal and honey production, 
and the predicted investments of large-
scale agricultural production put signifi -
cant pressure on miombo ecosystems and 
have already reached the borders of sus-
tainability (Dewees et al., 2010; Piedade, 
2013; Finckh, 2015; Muzima & Mendy, 
2015). This is partly due to the history of 
the country, as Angola still struggles with 
food shortages and insuffi  cient medical 
and educational supply, as well as the 
ongoing reconstruction of infrastructure 
after 27 years of civil war. 

The government of Angola was and is 
still confronted with infrastructure con-
struction and demining issues, as well 
as with much-needed improvements to 
basic medical and educational services, 

especially in rural areas (BTI, 2014) . 
Thus, the local population is still heav-
ily dependent on the consumption of 
natural resources and subsistence agri-
culture. Currently, food is predominant-
ly produced at the expense of woodland 
ecosystems by converting them to new 
fi elds; this process is presently indis-
pensable to provide a basic food supply 
for human livelihood (Friis & Reenberg, 
2010). On one hand, this leads to many 
areas of miombo woodlands being con-
verted for cultivation purposes, but on 
the other hand to degradation processes 
due to the selective use of woodland re-
sources (Piedade, 2013). 

Providing a synthesis of a number of 
studies, we analyse processes of con-
version and modifi cation of miombo 
woodlands and assess the predominant 
trade-off  between food production from 
agriculture and timber resource extrac-
tion. The two spheres, agricultural area 
and woodlands, are temporally and spa-

tially analysed. Overall, the study objec-
tives are as follows:
• to describe the temporal and spatial dy-

namics of agricultural expansion and the 
loss of miombo woodlands and quantify 
the trade-off  between timber extraction 
and agricultural food production.

• to analyse changes in cultivation pat-
terns and connect them to socioeco-
nomic settings.

• to spatially and temporally describe 
woodland degradation processes.

Study area

The study area is located in south-central 
Angola and incorporates parts of the 
provinces of Bié, Cuando Cubango, and 
Moxico, covering an area of 48 600 km². 
The mean altitude is about 1 500 m above 
sea level (a.s.l.), ranging from 1 350 m 
a.s.l. in the wetlands to approx. 1 650 m 
a.s.l. in the hills (Fig. 1). 

Figure 1: Overview of the study area, including the municipality administrations of Chitembo, Cuchi, and Menongue, as well as the main 
paved roads and areas of cultivation.
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The study area is characterised by a 
large network of rivers that stretch from 
north to south with lateral valleys cross-
ing the woodlands, which are situated on 
higher slopes and hilltops. At the centre of 
the valleys, wetlands with thick peat lay-
ers occur due to the constant infl ow from 
the slopes. The soils of the slopes are pre-
dominantly Arenosols or shallow soils on 
granitic bedrock. The hilltops are covered 
by woodlands and also consist of Areno-
sols with medium concentration of nutri-
ents (Gröngröft et al., 2013). The wood-
lands are characterised as open to dense 
miombo woodlands and are dominated 
by species of the genera Brachystegia, 
Cryptosepalum, and Julbernadia. Most of 
the geoxylic grasslands on the slopes are 
dominated by dwarf shrubs, particularly 
Cryptosepalum maraviense and C. exfo-
liatum spp. suff ruticans and tall growing 
grasses (Revermann et al., 2013).

Methods

The presented work consists of several 
studies that were combined to answer the 
objectives formulated above. In each of 
these studies, multi-temporal and time 
series approaches were applied using 
satellite images provided by the Landsat 
sensor family. The Landsat-TM, -ETM+, 
and OLI sensors all have a medium res-
olution (30 x 30 m) and a regular mon-
itoring frequency (up to 16 days), thus 
providing detailed and consistent infor-
mation on land cover and land ecosystem 
changes for up to 35 years of history, 
which forms an ideal database for envi-
ronmental monitoring at large (Wulder et 
al., 2008; Wulder et al., 2012). We make 
use of a pre-processing framework that 
provides radiometrically corrected Land-
sat images organised in a tiling struc-
ture that allows for effi  cient data access, 
which has been described in more detail 
by Röder et al. (this volume).

Agricultural expansion and 
trade-off s
In a fi rst step, the impact of infrastruc-
ture reconstruction and improvement 
was assessed by using a bi-temporal 
unsupervised classifi cation approach 
(1997/1998–2008/2009) based on Land-

sat data in combination with higher-
resolution RapidEye data (Schneibel et 
al., 2013). For this purpose, an unsuper-
vised classifi cation using the ISODATA 
clustering algorithm was calculated on 
Landsat images from 1997/1998 as well 
as 2008/2009. The results of this classi-
fi cation were iteratively grouped based 
on aerial imagery using RapidEye data as 
reference. This resulted in a land use clas-
sifi cation including the fi elds that were 
established between the two time steps. 
Additionally, roads and dirt tracks were 
captured and the locations of fi elds were 
analysed according their proximity to the 
streets by using a buff er analysis around 
both types of roads: paved and dirt tracks. 

In a second step, the exact location of 
deforestation due to agricultural expan-
sion was established for a larger study area 
and in higher temporal detail (Schneibel 
et al., 2016). This multi-temporal ap-
proach, again based on an unsupervised 
ISODATA algorithm, was also used 
to quantify the trade-off  between food 
(maize) and timber by applying indicator 
values based on literature values (Chidu-
mayo, 2014) as well as on household sur-
veys. We could thus quantify the amount 
of maize grains (103 ± 54.1 kg  ha-1) that 
could potentially be harvested from 
the new fi elds that were established 
during one time step. In contrast, we 
could also denominate timber biomass 
(79.9 ± 11.05 t ha-1) that was lost due to 
slash-and-burn activity for each time step 
(for the whole study period 1989–2013). 
The time steps ranged between 4–6 years, 
depending on data availability (see Fig. 3 
for time step defi nition). Regeneration 
of biomass on fallows was also assessed 
by using the enhanced vegetation index 
(EVI) and stratifi cation of the study area 
with spectral angle mapping (Schneibel 
et al., 2016). The EVI is a spectral index 
that is considered to be robust against 
background cover; its values do not satu-
rate in dense vegetation areas (Huete et 
al., 2002). We calculated the EVI based 
on a 2014 Landsat image for those areas 
that were detected as new fi eld areas in 
any of the time steps. For comparison 
reasons, we also calculated the mean 
EVI for 300 random points in woodland 
areas that could be considered as stable 
throughout the whole study period.

Cropping patterns
Although previous studies allowed the 
accurate delineation of agricultural fi elds 
and permitted analysis of the main driv-
ers of agricultural expansion, we in-
cluded a further study to focus on the 
temporal dynamics of fi eld expansion 
and cultivation patterns (Schneibel et al., 
2017a). We used an algorithm for tem-
poral segmentation of annual Landsat 
time series (LandTrendr, Kennedy et al., 
2010) from 1989 until 2013, which led 
to a temporally detailed analysis of cul-
tivation dynamics. The LandTrendr algo-
rithm automatically builds a time series 
based on a previously defi ned index. We 
chose the normalised burn ration (NBR) 
because it was most precise in detecting 
disturbances caused by the clearcutting 
of miombo woodland. LandTrendr pro-
vides pixel-based automatic selection of 
best observations according to the opti-
mal phenological season via the day of 
the year and the absence of cloud cover. It 
uses the concept of time series segmenta-
tion and can detect both short- and long-
term changes and yet is robust against 
intra-annual variations. For a detailed 
description of the LandTrendr approach, 
please see Kennedy et al. (2010). Out-
come of the LandTrendr segmentation 
was a fi tted time series that showed long-
term trends as well as abrupt changes. To 
interpret this fi tted time series, we only 
analysed those zones that were detect-
ed as agricultural areas in the previous 
studies. We used several parameters to 
interpret the fi tted time series, adapted 
to the specifi c study area characteristics. 
The parameters were based on results 
from household surveys and resemble 
the known cultivation characteristics 
(e.g., onset of disturbance, length of dis-
turbance, magnitude of disturbance). As 
a result, we were able to quantify onset, 
duration, and regeneration on an annual 
basis

Forest degradation
Whereas the previous studies primarily 
focused on the conversion process from 
woodland to agricultural areas, we com-
plemented these in a last step by also 
analysing subtle modifi cation processes 
occurring from 1989 until 2013 (Schnei-
bel et al., 2017b). These processes,  often 
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Results

Agricultural expansion and 
trade-off s
The spatial delineation of fi elds shows 
agricultural expansion for fi ve time steps 
and is illustrated in Figure 2. We found 
that expansion is spatially concentrated 
around roads and settlements and de-
pends on the quality of streets (Fig. 2). 
Proportionally, the improvement (pave-
ment) of a street led to a strong increase 
in agricultural areas being established in 
close proximity.

Regarding the temporal dynamics, a 
constant increase in the rate of  agricultural 

series was analysed on a per-pixel basis by 
linear regression and parameters including 
intercept, signifi cance of trend, mean ab-
solute error, and maximum residuum were 
obtained. These parameters can be attrib-
uted to processes like previous use or dis-
turbance, as well as diff erent degradation 
or regeneration processes. Based on the 
parameters, the study area was classifi ed 
into diff erent degradation and regenera-
tion areas, as well as stable woodland ar-
eas. To identify the impact of fi re, MODIS 
ignition points were used for the time from 
2000–2012 to assess spatial correspond-
ence between fi res and woodland degra-
dation areas (Frantz et al., 2016). 

 taking the form of degradation, were 
mainly due to selective logging for timber 
use, charcoal production, or honey pro-
duction. For this purpose, the disturbance 
index (DI) was applied to a Landsat annu-
al time series. The DI is a linear transfor-
mation of the Tasseled Cap indices (Kauth 
& Thomas, 1976) and is based on the as-
sumption that disturbances will result in 
higher brightness and lower greenness and 
wetness values (Healey et al., 2005). The 
index minimises external infl uences like 
inter-annual variation of rainfall by resca-
ling the index via image statistics (mean 
and standard deviation of reference wood-
land population). The corresponding time 

Figure 2: Agricultural expansion based on unsupervised classifi cation (ISODATA) of Landsat data for fi ve time steps. The diff erent colours 
represent the diff erent time steps. A close-up look for the cities Chitembo, Cuchi, and Menongue is also provided (right). The two paved 
roads are shown in yellow (Schneibel et al., 2016).



364                                                Cඅංආൺඍൾ ർඁൺඇ඀ൾ ൺඇൽ ൺൽൺඉඍංඏൾ අൺඇൽ ආൺඇൺ඀ൾආൾඇඍ ංඇ ඌඈඎඍඁൾඋඇ Aൿඋංർൺ

La
nd

 co
ve

r d
yn

am
ics

tor value showed less variation, resulting 
in lower variabilities between a minimum 
of about 370 000 tons and a maximum 
of about 480 000 tons for the fi rst time 
step. The loss of biomass also maximised 
for the last time step (2009–2013) with a 
mean of about 970 000 tons (Schneibel et 
al., 2016).

Cropping patterns
Although the main cultivation regime is 
shifting cultivation, the analysis of re-
growth showed only slow regeneration. 
Regrowth was assessed for all areas that 
were detected as expanded agriculture. 
The EVI only provided an approxima-
tion to actual biomass cover. Regarding 
regrowth on former fi elds, it showed that 
from 1989 to 2013, the initial level of 
biomass was not reached again, which 
might be due to the relatively short re-
covery time period of 24 years. The high-
est EVI values were found in undisturbed 
woodlands, while the lowest EVI values 
occurred, as expected, on the most re-
cently established fi elds (2009–2013) 
(Fig. 5) (Schneibel et al., 2016).

As biomass did not recover even in ar-
eas that are assumed to be mainly used 
for shifting cultivation, we also assessed 
if diff erences in cultivation patterns were 
visible within the study area. For the 
same observation time (1989–2013), the 
change from shifting to semi-permanent/
permanent cultivation was evaluated. 
This change to more semi-permanent 
forms of cultivation was found when 
analysing regeneration of fi elds after the 
traditional cultivation time that was stat-
ed by the farmers in a household survey. 
Those fi elds that did not recover above 
a certain threshold after their assumed 
abandonment were regarded as being 
semi-permanent or permanent. This state 
was found for 22% of all fi elds in the 
study area; however, it holds especially 
true around the cities.  

Forest degradation
In addition to the conversion processes 
of woodland to fi eld, we also analysed 
woodland degradation processes. The 
following map (Fig. 5) shows that degra-
dation processes are widespread not only 
around cities and infrastructure, but also 
in the presumably undisturbed woodland 

expansion has decreased, which might be 
due to the changes in cultivation patterns 
from shifting to semi-permanent cultiva-
tion (Schneibel et al., 2016).

The rate of crop yield according to the 
conversion rate varied highly between 
farmers because of diff erent soil types, 
farming techniques, or damage from in-
sects or pests (103 ± 54.1 kg ha-1 of maize 
grains). Accordingly, this results in a 
highly variable overall available harvest. 
During the last several years, 1 200 tons 
of maize grains per year were available 
due to the large increase in agricultural 
area. For woodland biomass, the indica-

expansion was detected over the fi ve time 
steps for the whole study area (Schneibel 
et al., 2016). Nevertheless, the detailed 
analysis of annual time series shows spe-
cifi c temporal dynamics (Schneibel et 
al., 2017a) (Fig. 3). The rate of new fi elds 
after the nominal ceasefi re period from 
1994–1998 decreased from 12 000 ha 
per year to a minimum of 4 000 ha per 
year during the resumption of fi ghting 
from 1998–2002. Another maximum 
was reached shortly after the termination 
of the civil war; expansion in that period 
fl uctuates heavily around 10 000 ha per 
year (Schneibel et al., 2017). Since 2004, 

Figure 3: Annual area (ha) that is changed to agriculture (dotted line), including moving 
average for three years (straight line) (Schneibel et al., 2016).

Figure 4: EVI values that relate to biomass regrowth for the fi ve time steps. EVI values for 
undisturbed woodlands are displayed in red (Schneibel et al., 2017a).
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areas in the eastern part of the study area. 
Nevertheless, almost 74% of the miombo 
woodlands did not show any signifi cant 
conversion trend and could thus be con-
sidered undisturbed. Overall, 13.3% of 
woodlands showed degrading trends and 
almost the same proportion (12.8%) can 
be considered to be regenerating (Sch-
neibel et al., 2016) (Fig. 5). Furthermore, 

we could identify regular disturbances 
(e.g., due to selective use) taking place 
in woodland areas. This information is 
based on the maximum residuum, lead-
ing to high short-term fl uctuation in the 
time series.

The results were evaluated against 
MODIS ignition points. Although a 
quantitative assessment of spatial cor-

relation was not possible due to diff er-
ent observation periods (2000–2013 for 
MODIS ignition points and 1989–2013 
for the Landsat time series), there seems 
to be a relationship between regular fi res 
and degradation areas.  

Discussion

The trend of increasing deforestation 
must be evaluated in the context of so-
cioeconomic changes and, in particular, 
increasing population numbers. When 
observing large-scale resettlement dy-
namics and population growth, it is not 
surprising that there is still a lack of avail-
able food supply, and thus a high demand 
for food (BTI, 2014). These resettlements 
primarily occurred during the civil war, 
due to people fl eeing into the cities, seek-
ing safety and basic supplies, but also to 
the government moving people closer to 
cities and to refugees returning after the 
fi nal ceasefi re. These dynamics can be 
seen in the rapid deforestation of miombo 
woodlands around the cities, especially 
after the ceasefi re in 2002, as well as in a 
high number of early fi elds (1989–1998) 
that were established in the woodlands 
but given up around the civil war’s ter-
mination.

Deforestation and cultivation patterns 
are connected to infrastructure destruc-
tion and reconstruction. The two main 
roads of the study area were reconstruct-
ed from 2008–2010. This enabled access 
to new woodland areas and, at the same 
time, to local trading hubs. Furthermore, 
after the civil war, former refugees were 
resettled by governmental orders close 
to streets and existing settlements. These 
resettlement actions, in combination with 
the increased safety of using woodland ar-
eas, might have aff ected the fi rst wave of 
agricultural expansion from 2000–2004. 
Later decreases in the rate of agricultural 
expansion might be attributed to the life 
cycle of fi elds.

Our results showed that the cultivation 
cycle has been changing slowly from 
shifting cultivation to semi-permanent or 
permanent forms of cultivation. House-
hold surveys of farmers showed that 
a lack of seeds, fi eld input, and knowl-
edge prevents them from adopting new 

Figure 5: The map shows degradation processes within the miombo woodlands (red and 
pink colours) as well as regularly disturbed but stable woodlands (orange colours) and 
undisturbed woodland regions (green colours) for the time between 1989 and 2013 
(Schneibel et al., 2017b).
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